The Square Kilometre Array (SKA) will have a low frequency component (SKA-low) which has as one of its main science goals the study of the redshifted 21cm line from the earliest phases of star and galaxy formation in the Universe. This 21cm signal provides a new and unique window both on the time of the formation of the first stars and accreting black holes and the subsequent period of substantial ionization of the intergalactic medium. The signal will teach us fundamental new things about the earliest phases of structure formation, cosmology and even has the potential to lead to the discovery of new physical phenomena. Here we present a white paper with an Executive SummaryThe Square Kilometre Array (SKA) will have a low frequency component (AA-low/SKA-low 1 ) which has as one of its main science goals the study of the redshifted 21cm line from the earliest phases of star and galaxy formation in the Universe (see SKA Memo 125). It is during this phase that the first building blocks of the galaxies that we see around us today, including our own Milky Way, were formed. It is a crucial period for understanding the history of the Universe and one for which we have currently very little observational data.We divide the period into two different phases based on the physical processes which affect the Intergalactic Medium. The first period, which we call the Cosmic Dawn, saw the formation of the first stars and accreting black holes, which changed the quantum state of the still neutral Intergalactic Medium. The second period, known as the Epoch of Reionization, is the one during which large areas between the galaxies were photo-ionized by the radiation produced in galaxies and which ended when the Intergalactic Medium had become completely ionized.Observations of the redshifted 21-cm line with SKA will provide a new and unique window on the entire period of Cosmic Dawn and Reionization. The signal is sensitive to the emergence of the first stellar populations, radiation from growing massive black holes and the formation of larger groups of galaxies and bright quasars. At the same time it maps the distribution of most of the baryonic matter in the Universe. The study of the redshifted 21cm line will teach us fundamental new things about the earliest phases of structure formation and cosmology. It even has the potential to lead to the discovery of new physical phenomena. Here we present an overview of the science questions that SKA-low can address, how we plan to tackle these questions and what this implies for the basic design of the telescope.The redshifted 21cm signal will be analyzed with different techniques, which each come with their own requirements for the SKA: (i) Tomography, (ii) power-spectra and higher-order statistics, (iii) hydrogen absorption, (iv) global/total-intensity signal. Whereas all precursors/pathfinders aim to study the signal statistically through its power spectrum, SKA will be able to image the neutral hydrogen distribution directly and its focus will therefore be more on tomograph...
Aims. The aim of the LOFAR epoch of reionization (EoR) project is to detect the spectral fluctuations of the redshifted HI 21 cm signal. This signal is weaker by several orders of magnitude than the astrophysical foreground signals and hence, in order to achieve this, very long integrations, accurate calibration for stations and ionosphere and reliable foreground removal are essential. Methods. One of the prospective observing windows for the LOFAR EoR project will be centered at the north celestial pole (NCP). We present results from observations of the NCP window using the LOFAR highband antenna (HBA) array in the frequency range 115 MHz to 163 MHz. The data were obtained in April 2011 during the commissioning phase of LOFAR. We used baselines up to about 30 km. The data was processed using a dedicated processing pipeline which is an enhanced version of the standard LOFAR processing pipeline.Results. With about 3 nights, of 6 h each, effective integration we have achieved a noise level of about 100 μJy/PSF in the NCP window. Close to the NCP, the noise level increases to about 180 μJy/PSF, mainly due to additional contamination from unsubtracted nearby sources. We estimate that in our best night, we have reached a noise level only a factor of 1.4 above the thermal limit set by the noise from our Galaxy and the receivers. Our continuum images are several times deeper than have been achieved previously using the WSRT and GMRT arrays. We derive an analytical explanation for the excess noise that we believe to be mainly due to sources at large angular separation from the NCP. We present some details of the data processing challenges and how we solved them. Conclusions. Although many LOFAR stations were, at the time of the observations, in a still poorly calibrated state we have seen no artefacts in our images which would prevent us from producing deeper images in much longer integrations on the NCP window which are about to commence. The limitations present in our current results are mainly due to sidelobe noise from the large number of distant sources, as well as errors related to station beam variations and rapid ionospheric phase fluctuations acting on bright sources. We are confident that we can improve our results with refined processing.
The first generation of redshifted 21 cm detection experiments, carried out with arrays like Low Frequency Array (LOFAR), Murchison Widefield Array (MWA) and Giant Metrewave Telescope (GMRT), will have a very low signal-to-noise ratio (S/N) per resolution element ( 0.2). In addition, whereas the variance of the cosmological signal decreases on scales larger than the typical size of ionization bubbles, the variance of the formidable galactic foregrounds increases, making it hard to disentangle the two on such large scales. The poor sensitivity on small scales, on the one hand, and the foregrounds effect on large scales, on the other hand, make direct imaging of the Epoch of Reionization of the Universe very difficult, and detection of the signal therefore is expected to be statistical. Despite these hurdles, in this paper we argue that for many reionization scenarios low-resolution images could be obtained from the expected data. This is because at the later stages of the process one still finds very large pockets of neutral regions in the intergalactic medium, reflecting the clustering of the large-scale structure, which stays strong up to scales of ≈120 h −1 comoving Mpc (≈1 • ). The coherence of the emission on those scales allows us to reach sufficient S/N ( 3) so as to obtain reionization 21 cm images. Such images will be extremely valuable for answering many cosmological questions but above all they will be a very powerful tool to test our control of the systematics in the data. The existence of this typical scale (≈120 h −1 comoving Mpc) also argues for designing future EoR experiments, e.g. with Square Kilometre Array, with a field of view of at least 4 • .
We present the Multifrequency Snapshot Sky Survey (MSSS), the first northern-sky Low Frequency Array (LOFAR) imaging survey. In this introductory paper, we first describe in detail the motivation and design of the survey. Compared to previous radio surveys, MSSS is exceptional due to its intrinsic multifrequency nature providing information about the spectral properties of the detected sources over more than two octaves (from 30 to 160 MHz). The broadband frequency coverage, together with the fast survey speed generated by LOFAR's multibeaming capabilities, make MSSS the first survey of the sort anticipated to be carried out with the forthcoming Square Kilometre Array (SKA). Two of the sixteen frequency bands included in the survey were chosen to exactly overlap the frequency coverage of large-area Very Large Array (VLA) and Giant Metrewave Radio Telescope (GMRT) surveys at 74 MHz and 151 MHz respectively. The survey performance is illustrated within the MSSS Verification Field (MVF), a region of 100 square degrees centered at (α, δ) J2000 = (15 h , 69 • ). The MSSS results from the MVF are compared with previous radio survey catalogs. We assess the flux and astrometric uncertainties in the catalog, as well as the completeness and reliability considering our source finding strategy. We determine the 90% completeness levels within the MVF to be 100 mJy at 135 MHz with 108 resolution, and 550 mJy at 50 MHz with 166 resolution. Images and catalogs for the full survey, expected to contain 150 000-200 000 sources, will be released to a public web server. We outline the plans for the ongoing production of the final survey products, and the ultimate public release of images and source catalogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.