Ultra-hot giant exoplanets receive thousands of times Earth’s insolation 1 , 2 . Their high-temperature atmospheres (>2,000 K) are ideal laboratories for studying extreme planetary climates and chemistry 3 – 5 . Daysides are predicted to be cloud-free, dominated by atomic species 6 and substantially hotter than nightsides 5 , 7 , 8 . Atoms are expected to recombine into molecules over the nightside 9 , resulting in different day-night chemistry. While metallic elements and a large temperature contrast have been observed 10 – 14 , no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night (“evening”) and night-to-day (“morning”) terminators could, however, be revealed as an asymmetric absorption signature during transit 4 , 7 , 15 . Here, we report the detection of an asymmetric atmospheric signature in the ultra-hot exoplanet WASP-76b. We spectrally and temporally resolve this signature thanks to the combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by −11±0.7 km s -1 on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside 16 . In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. Iron must thus condense during its journey across the nightside.
The Multi Unit Spectroscopic Explorer (MUSE) is a second-generation VLT panoramic integral-field spectrograph currently in manufacturing, assembly and integration phase. MUSE has a field of 1x1 arcmin² sampled at 0.2x0.2 arcsec² and is assisted by the VLT ground layer adaptive optics ESO facility using four laser guide stars. The instrument is a large assembly of 24 identical high performance integral field units, each one composed of an advanced image slicer, a spectrograph and a 4kx4k detector. In this paper we review the progress of the manufacturing and report the performance achieved with the first integral field unit.
Context. ESPRESSO is the new high-resolution spectrograph of ESO's Very Large Telescope (VLT). It was designed for ultra-high radial-velocity (RV) precision and extreme spectral fidelity with the aim of performing exoplanet research and fundamental astrophysical experiments with unprecedented precision and accuracy. It is able to observe with any of the four Unit Telescopes (UTs) of the VLT at a spectral resolving power of 140 000 or 190 000 over the 378.2 to 788.7 nm wavelength range; it can also observe with all four UTs together, turning the VLT into a 16-m diameter equivalent telescope in terms of collecting area while still providing a resolving power of 70 000. Aims. We provide a general description of the ESPRESSO instrument, report on its on-sky performance, and present our Guaranteed Time Observation (GTO) program along with its first results. Methods. ESPRESSO was installed on the Paranal Observatory in fall 2017. Commissioning (on-sky testing) was conducted between December 2017 and September 2018. The instrument saw its official start of operations on October 1, 2018, but improvements to the instrument and recommissioning runs were conducted until July 2019. Results. The measured overall optical throughput of ESPRESSO at 550 nm and a seeing of 0.65 exceeds the 10% mark under nominal astroclimatic conditions. We demonstrate an RV precision of better than 25 cm s −1 during a single night and 50 cm s −1 over several months. These values being limited by photon noise and stellar jitter shows that the performance is compatible with an instrumental precision of 10 cm s −1. No difference has been measured across the UTs, neither in throughput nor RV precision. Conclusions. The combination of the large collecting telescope area with the efficiency and the exquisite spectral fidelity of ESPRESSO opens a new parameter space in RV measurements, the study of planetary atmospheres, fundamental constants, stellar characterization, and many other fields.
Aims. We report on ESPRESSO high-resolution transmission spectroscopic observations of two primary transits of the highly irradiated, ultra-hot Jupiter-sized planet, WASP-76b. We investigated the presence of several key atomic and molecular features of interest that may reveal the atmospheric properties of the planet. Methods. We extracted two transmission spectra of WASP-76b with R ≈ 140 000 using a procedure that allowed us to process the full ESPRESSO wavelength range (3800–7880 Å) simultaneously. We observed that at a high signal-to-noise ratio, the continuum of ESPRESSO spectra shows ‘wiggles’, which are likely caused by an interference pattern outside the spectrograph. To search for the planetary features, we visually analysed the extracted transmission spectra and cross-correlated the observations against theoretical spectra of different atomic and molecular species. Results. The following atomic features are detected: Li I, Na I, Mg I, Ca II, Mn I, K I, and Fe I. All are detected with a confidence level between 9.2 σ (Na I) and 2.8 σ (Mg I). We did not detect the following species: Ti I, Cr I, Ni I, TiO, VO, and ZrO. We impose the following 1 σ upper limits on their detectability: 60, 77, 122, 6, 8, and 8 ppm, respectively. Conclusions. We report the detection of Li I on WASP-76b for the first time. In addition, we confirm the presence of Na I and Fe I as previously reported in the literature. We show that the procedure employed in this work can detect features down to the level of ~0.1% in the transmission spectrum and ~10 ppm by means of a cross-correlation method. We discuss the presence of neutral and singly ionised features in the atmosphere of WASP-76b.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.