Context. The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. Aims. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. Methods. We used classical dense photometric lightcurves from several sources (Uppsala Asteroid Photometric Catalogue, Palomar Transient Factory survey, and from individual observers) and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. Results. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter c YORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetic and observed pole-latitude distributions, we were able to constrain the typical values of the c YORP parameter as between 0.05 and 0.6.
Context. Until recently, the 3D shape, and therefore density (when combining the volume estimate with available mass estimates), and surface topography of the vast majority of the largest (D ≥ 100 km) main-belt asteroids have remained poorly constrained. The improved capabilities of the SPHERE/ZIMPOL instrument have opened new doors into ground-based asteroid exploration. Aims. To constrain the formation and evolution of a representative sample of large asteroids, we conducted a high-angular-resolution imaging survey of 42 large main-belt asteroids with VLT/SPHERE/ZIMPOL. Our asteroid sample comprises 39 bodies with D ≥ 100 km and in particular most D ≥ 200 km main-belt asteroids (20/23). Furthermore, it nicely reflects the compositional diversity present in the main belt as the sampled bodies belong to the following taxonomic classes: A, B, C, Ch/Cgh, E/M/X, K, P/T, S, and V. Methods. The SPHERE/ZIMPOL images were first used to reconstruct the 3D shape of all targets with both the ADAM and MPCD reconstruction methods. We subsequently performed a detailed shape analysis and constrained the density of each target using available mass estimates including our own mass estimates in the case of multiple systems. Results. The analysis of the reconstructed shapes allowed us to identify two families of objects as a function of their diameters, namely “spherical” and “elongated” bodies. A difference in rotation period appears to be the main origin of this bimodality. In addition, all but one object (216 Kleopatra) are located along the Maclaurin sequence with large volatile-rich bodies being the closest to the latter. Our results further reveal that the primaries of most multiple systems possess a rotation period of shorter than 6 h and an elongated shape (c∕a ≤ 0.65). Densities in our sample range from ~1.3 g cm−3 (87 Sylvia) to ~4.3 g cm−3 (22 Kalliope). Furthermore, the density distribution appears to be strongly bimodal with volatile-poor (ρ ≥ 2.7 g cm−3) and volatile-rich (ρ ≤ 2.2 g cm−3) bodies. Finally, our survey along with previous observations provides evidence in support of the possibility that some C-complex bodies could be intrinsically related to IDP-like P- and D-type asteroids, representing different layers of a same body (C: core; P/D: outer shell). We therefore propose that P/ D-types and some C-types may have the same origin in the primordial trans-Neptunian disk.
Context. The available set of spin and shape modelled asteroids is strongly biased against slowly rotating targets and those with low lightcurve amplitudes. This is due to the observing selection effects. As a consequence, the current picture of asteroid spin axis distribution, rotation rates, radiometric properties, or aspects related to the object's internal structure might be affected too. Aims. To counteract these selection effects, we are running a photometric campaign of a large sample of main belt asteroids omitted in most previous studies. Using least chi-squared fitting we determined synodic rotation periods and verified previous determinations. When a dataset for a given target was sufficiently large and varied, we performed spin and shape modelling with two different methods to compare their performance. Methods. We used the convex inversion method and the non-convex SAGE algorithm, applied on the same datasets of dense lightcurves. Both methods search for the lowest deviations between observed and modelled lightcurves, though using different approaches. Unlike convex inversion, the SAGE method allows for the existence of valleys and indentations on the shapes based only on lightcurves. Results. We obtain detailed spin and shape models for the first five targets of our sample: (159) Aemilia, (227) Philosophia, (329) Svea, (478) Tergeste, and (487) Venetia. When compared to stellar occultation chords, our models obtained an absolute size scale and major topographic features of the shape models were also confirmed. When applied to thermophysical modelling, they provided a very good fit to the infrared data and allowed their size, albedo, and thermal inertia to be determined. Conclusions. Convex and non-convex shape models provide comparable fits to lightcurves. However, some non-convex models fit notably better to stellar occultation chords and to infrared data in sophisticated thermophysical modelling (TPM). In some cases TPM showed strong preference for one of the spin and shape solutions. Also, we confirmed that slowly rotating asteroids tend to have higher-than-average values of thermal inertia, which might be caused by properties of the surface layers underlying the skin depth.
The population of large 100+ km asteroids is thought to be primordial. As such, they are the most direct witnesses of the early history of our Solar System available. Those among them with satellites allow study of the mass, and hence density and internal structure. We study here the dynamical, physical, and spectral properties of the triple asteroid (107) Camilla from lightcurves, stellar occultations, optical spectroscopy, and high-contrast and high-angular-resolution images and spectro-images.Using 80 positions measured over 15 years, we determine the orbit of its larger satellite, S/2001 (107) 1, to be circular, equatorial, and prograde, with root-mean-square residuals of 7.8 mas, corresponding to a sub-pixel accuracy. From 11 positions spread over three epochs only, in 2015 and 2016, we determine a preliminary orbit for the second satellite S/2016 (107) 1. We find the orbit to be somewhat eccentric and slightly inclined to the primary's equatorial plane, reminiscent of the properties of inner satellites of other asteroid triple systems. Comparison of the near-infrared spectrum of the larger satellite reveals no significant difference with Camilla. Hence, both dynamical and surface properties argue for a formation of the satellites by excavation from impact and re-accumulation of ejecta in orbit.We determine the spin and 3-D shape of Camilla. The model fits well each data set: lightcurves, adaptive-optics images, and stellar occultations. We determine Camilla to be larger than reported from modeling of mid-infrared photometry, with a sphericalvolume-equivalent diameter of 254 ± 36 km (3 σ uncertainty), in agreement with recent results from shape modeling (Hanus et al., 2017, A&A 601). Combining the mass of (1.12 ± 0.01) × 10 19 kg (3 σ uncertainty) determined from the dynamics of the satellites and the volume from the 3-D shape model, we determine a density of 1,280 ± 130 kg·m −3 (3 σ uncertainty). From this density, and considering Camilla's spectral similarities with (24) Themis and (65) Cybele (for which water ice coating on surface grains was reported), we infer a silicate-to-ice mass ratio of 1-6, with a 10-30% macroporosity.
Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to λ 0 = 199.5±0.5° and β 0 = 39.8±5° in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps et al., 2007). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the "shoulders" of the lightcurves. The bulk density was then recomputed to 1.28 ±0.04 gcm -3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact that Antiope is sufficiently porous (~50%) to survive such an impact without being wholly destroyed. This violent shock would have then imparted enough angular momentum for fissioning of proto-Antiope into two equisized bodies. We calculated that the impactor must have a diameter greater than ~17 km, for an impact velocity ranging between 1 and 4 km/s. With such a projectile, this event has a substantial 50 % probability to have occurred over the age of the Themis family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.