Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell 1,2 . Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion 3 . Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes 4 . Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies 5 . Here we report observations of gravity-mode period spacings in red giants 6 that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly 50 seconds) and those that are also burning helium (period spacing 100 to 300 seconds).Oscillations in red giants, like those in the Sun, are thought to be excited by near-surface convection. The observed oscillation spectra are indeed remarkably Sun-like, with a broad range of radial and nonradial modes in a characteristic comb pattern [7][8][9][10][11]
Context. Models of stellar structure and evolution can be constrained by measuring accurate parameters of detached eclipsing binaries in open clusters. Multiple binary stars provide the means to determine helium abundances in these old stellar systems, and in turn, to improve estimates of their age. Aims. In the first paper of this series, we demonstrated how measurements of multiple eclipsing binaries in the old open cluster NGC 6791 sets tighter constraints on the properties of stellar models than has previously been possible, thereby potentially improving both the accuracy and precision of the cluster age. Here we add additional constraints and perform an extensive model comparison to determine the best estimates of the cluster age and helium content, employing as many observational constraints as possible. Methods. We improve our photometry and correct empirically for differential reddening effects. We then perform an extensive comparison of the new colour-magnitude diagrams (CMDs) and eclipsing binary measurements to Victoria and DSEP isochrones in order to estimate cluster parameters. We also reanalyse a spectrum of the star 2-17 to improve [Fe/H] constraints. Results. We find a best estimate of the age of ∼8.3 Gyr for NGC 6791 while demonstrating that remaining age uncertainty is dominated by uncertainties in the CNO abundances. The helium mass fraction is well constrained at Y = 0.30 ± 0.01 resulting in ΔY/ΔZ ∼ 1.4 assuming that such a relation exists. During the analysis we firmly identify blue straggler stars, including the star 2-17, and find indications for the presence of their evolved counterparts. Our analysis supports the RGB mass-loss found from asteroseismology and we determine precisely the absolute mass of stars on the lower RGB, M RGB = 1.15 ± 0.02 M . This will be an important consistency check for the detailed asteroseismology of cluster stars. Conclusions. Using multiple, detached eclipsing binaries for determining stellar cluster ages, it is now possible to constrain parameters of stellar models, notably the helium content, which were previously out of reach. By observing a suitable number of detached eclipsing binaries in several open clusters, it will be possible to calibrate the age-scale and the helium enrichment parameter Δ Y/Δ Z, and provide firm constraints that stellar models must reproduce.
We have analyzed solar-like oscillations in ∼1700 stars observed by the Kepler Mission, spanning from the main-sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (ν max ), the large frequency separation (∆ν) and oscillation amplitudes. We show that the difference of the ∆ν-ν max relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M ) s scaling nor the revised scaling relation by Kjeldsen & Bedding (2011) is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main-sequence to red-giants to a precision of ∼25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.
Context. Clear power excess in a frequency range typical for solar-type oscillations in red giants has been detected in more than 1 000 stars, which have been observed during the first 138 days of the science operation of the NASA Kepler satellite. This sample includes stars in a wide mass and radius range with spectral types G and K, extending in luminosity from the bottom of the giant branch up to high-luminous red giants, including the red bump and clump. The high-precision asteroseismic observations with Kepler provide a perfect source for testing stellar structure and evolutionary models, as well as investigating the stellar population in our Galaxy. Aims. We aim to extract accurate seismic parameters from the Kepler time series and use them to infer asteroseismic fundamental parameters from scaling relations and a comparison with red-giant models. Methods. We fit a global model to the observed power density spectra, which allows us to accurately estimate the granulation background signal and the global oscillation parameters, such as the frequency of maximum oscillation power. We find regular patterns of radial and non-radial oscillation modes and use a new technique to automatically identify the mode degree and the characteristic frequency separations between consecutive modes of the same spherical degree. In most cases, we can also measure the small separation between l = 0, 1, and 2 modes. Subsequently, the seismic parameters are used to estimate stellar masses and radii and to place the stars in an H-R diagram by using an extensive grid of stellar models that covers a wide parameter range. Using Bayesian techniques throughout our entire analysis allows us to determine reliable uncertainties for all parameters. Results. We provide accurate seismic parameters and their uncertainties for a large sample of red giants and determine their asteroseismic fundamental parameters. We investigate the influence of the stars' metallicities on their positions in the H-R diagram. Finally, we study the red-giant populations in the red clump and bump and compare them to a synthetic population. We find a mass and metallicity gradient in the red clump and clear evidence of a secondary-clump population.
We report results from a large Hubble Space Telescope project to observe a significant (∼34,000) ensemble of main-sequence stars in the globular cluster 47 Tucanae with a goal of defining the frequency of inner orbit, gas giant planets. Simulations based on the characteristics of the 8.3 days of time series data in the F555W and F814W Wide Field Planetary Camera 2 (WFPC2) filters show that ∼17 planets should be detected by photometric transit signals if the frequency of hot Jupiters found in the solar neighborhood is assumed to hold for 47 Tuc. The experiment provided high-quality data sufficient to detect planets. A full analysis of these WFPC2 data reveals ∼75 variables, but no light curves resulted for which a convincing interpretation as a planet could be made. The planet frequency in 47 Tuc is at least an order of magnitude below that for the solar neighborhood. The cause of the absence of close-in planets in 47 Tuc is not yet known; presumably the low metallicity and/or crowding of 47 Tuc interfered with planet formation, with orbital evolution to close-in positions, or with planet survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.