A study of the spore wall of Encephalitozoon hellem was performed on thin sections, freeze-fracture, and deep-etched samples to obtain information on spore wall organization and composition. Our observations demonstrate that the spore wall is formed by an inner 30-35 nm electron-lucent endospore and an outer 25-30 nm electron-dense exospore. The exospore is a complex of three layers: an outer spiny layer, an electron-lucent intermediate lamina and an inner fibrous layer. Freeze-fracture and deep-etching techniques reveal that the intermediate lamina and the inner fibrous layer result from the different spatial disposition of the same 4-nm thick fibrils. In thin sections the endospore reveals a scattered electron-dense material that appears in the form of trabecular structures when analyzed in deep-etched samples. The presence of chitin in the exospore is discussed.
To develop an alternative genotyping tool, the genetic diversity of Encephalitozoon hellem was examined at the polar tube protein (PTP) locus. Nucleotide sequence analysis of the PTP gene divided 24 E. hellem isolates into four genotypes, compared to two genotypes identified by analysis of the internal transcribed spacer of the rRNA gene. The four PTP genotypes differed from each other by the copy number of the 60-bp central repeat as well as by point mutations. A simple PCR test was developed to differentiate E. hellem genotypes based on the difference in the size of PTP PCR products, which should facilitate the genotyping of E. hellem in clinical samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.