The aim of the paper is to explain the mechanism of zinc oxide (ZnO) nanoparticle (NP) size control, which enables the size control of ZnO NPs obtained in microwave solvothermal synthesis (MSS) within the size range between circa 20 and 120 nm through the control of water content in the solution of zinc acetate in ethylene glycol. Heavy water was used in the tests. The mechanism of ZnO NPs size control was explained, discussed and experimentally verified. The discovery and investigation of this mechanism was possible by tracking the fate of water molecules during the whole synthesis process. All the synthesis products were identified. It was indicated that the MSS of ZnO NPs proceeded through the formation and conversion of intermediates such as Zn(OH)(CHCOO) · xHO. Esters and HO were the by-products of the MSS reaction of ZnO NPs. We justified that the esterification reaction is the decisive stage that is a prerequisite of the formation of ZnO NPs. The following parameters of the obtained ZnO NPs and of the intermediate were determined: pycnometric density, specific surface area, phase purity, average particles size, particles size distribution and chemical composition. The ZnO NPs morphology and structure were determined using scanning electron microscopy.
Zinc oxide nanoparticles (ZnO NPs) were obtained by the microwave solvothermal synthesis (MSS) method. The precursor of the MSS reaction was a solution of hydrated zinc acetate in ethylene glycol with water addition. It was proved that by controlling the water concentration in the precursor it was possible to control the size of ZnO NPs in a programmed manner. The less the water content in the precursor, the smaller the size of ZnO NPs obtained. The obtained NPs with the average particle size ranging from 25 nm to 50 nm were characterised by homogeneous morphology and a narrow distribution of particle sizes. The following parameters of the obtained ZnO NPs were determined: pycnometric density, specific surface area, phase purity, chemical composition, lattice parameters, average particle size, and particle size distribution. The average size of ZnO NPs was determined using Scherrer’s formula, Nanopowder XRD Processor Demo web application, by converting the results of the specific surface area, and TEM tests using the dark field technique. ZnO morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The test performed by the X-ray powder diffraction (XRD) confirmed that crystalline ZnO, pure in terms of phase, had been obtained.
Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer’s equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8–39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.