A series of experiments, examining the confinement properties of ICRF heated H-mode plasmas, has been carried out on the C-Mod tokamak. C-Mod is a compact tokamak which operates at high particle, power, and current densities at toroidal fields up to 8T. Under these conditions the plasma is essentially thermal with very little contribution to the stored energy from energetic ions (typically no more than 5%) and with Ti~Te. Most of the data were taken with the machine in a single-null "closed" divertor configuration with the plasma facing components clad in molybdenum tiles. The data include those taken both before and after the first wall surfaces were coated with boron, with emphasis on the latter. H-modes obtained from plasmas run on boronized walls typically had lower impurity content and radiated power and attained higher stored energy than those run on bare molybdenum. Confinement enhancement, the energy confinement time normalized to L-mode scaling, for discharges with boronized walls, ranged from 1.6 to 2.4. The unique operating regime of the C-Mod device provided a means for extending the 1 tests of global scaling laws to parameter ranges not previously accessible. For example, the C-Mod ELMfree data was found to be 1.1-1.6 times the ITERH93 scaling and the ELMy data almost 2.0-2.8 times the ITERH92 ELMy scaling law, suggesting that the size scaling in both scalings may be too strong. While both ELMfree and ELMy discharges were produced, the ELM characteristics were not easily compared to observations on other devices. No large, low frequency ELMs were seen despite the very high edge pressure and temperature gradients that were attained. For all of our H-mode discharges, a clear linear relationship between the edge temperature pedestal and the temperature gradient in the core plasma was observed; the discharges with the "best" transport barriers also showing the greatest improvement in core confinement.
I IntroductionAlcator C-MOD', the third high-field compact tokamak in the Alcator line, has been operating tokamak plasmas since May 1993. Its design capability includes toroidal field, BT = 9 T, plasma current I, up to 3 MA, in plasmas with major radius R = 0.67 m, minor radius a = 0.21 m, with elongation up to n = 1.8. Divertor operation can be either into its closed, baffled, divertor chamber or to open flat plates. The magnetic configuration is rather similar to that presently envisaged for the International Thermonuclear Experimental Reactor, ITER, except that it is about a factor of ten smaller.The high particle-, current-and power-densities characteristic of such compact tokamaks lead to edge conditions that are in many respects comparable to those expected in ITER, and offer the opportunity to investigate so-called dissipative divertor operation, in which the power scraped off into the divertor is exhausted through a combination of neutral and radiative processes rather than through plasma conduction direct to the divertor plates.Alcator C-MOD offers excellent port access to the plasma for diagnostic and heating purposes. Its present complement of diagnostics includes full magnetics for equilibrium reconstruction, electron temperature profiles from electron cyclotron emission (ECE), density profiles from a ten-channel CO 2 laser interferometer, ion temperature profiles from high-resolution x-ray doppler measurements, neutron emission, and fast neutral particle analysis, various spectroscopic measurements such as visible bremsstrahlung, H. arrays, and vacuum ultraviolet impurity measurements, bolometer arrays, and x-ray and UV tomography. In addition, detailed edge, scrape-off-layer and divertor diagnosis based on probes and spectroscopy is available.The primary auxiliary heating method in the short term is ICRF, and two transmitters are available, providing a total 4 MW at 80 MHz. Thus far, experiments have concentrated on plasma coupling studies using a movable monopole antenna. Good power coupling into high density plasmas has been obtained, with loading resistance in the range of 5 to 15 Q, 2 in reasonable agreement with the theoretical calculations.So far the magnetic field has been limited to about 5.3 T awaiting power systems upgrades that will enable full-field operation next year. Even so, plasma currents up to 1 MA have been obtained, and durations over 1 second. Peak electron densities up to 9 x 1020 m-3, and temperatures up to T = 2.6, Ti = 1.6 keV have been achieved. Energy confinement is observed to exceed Neo-Alcator scaling.In section II we review some MHD and operational characteristics of the plasma.Section III discusses divertor experiments, section IV the confinement results, and section V the first ICRF coupling studies. II MHD and OperationA unique feature of the design of Alcator C-MOD is its thick stainless-steel vacuum vessel and structure. For reasons of mechanical strength, these have no insulating breaks and thus constitute 'shorted turns' on the ohmic transformer and the eddy ...
Plasma with significant central-cell beta can be sustained in a tandem mirror composed of three axisymmetric simple mirror cells by the use of ion-cyclotron resonant heating. Radial ponderomotive force due to the rf electric field opposes the centrifugal force due to the field-line curvature to ensure interchange stability. This is indicated by the sensitive dependence of the plasma stability on the sign of the difference between the rf frequency and the ion-cyclotron frequency.
Enhanced confinement modes up to a toroidal field of BT=8 T have been studied with up to 3.5 MW of radiofrequency (rf) heating power in the ion cyclotron range of frequencies (ICRF) at 80 MHz. H-mode is observed when the edge temperature exceeds a threshold value. The high confinement mode (H-mode) with higher confinement enhancement factors (H) and longer duration became possible after boronization by reducing the radiated power from the main plasma. A quasi-steady state with high confinement (H=2.0), high normalized beta (βN=1.5), low radiated power fraction (Pradmain/Ploss=0.3), and low effective charge (Zeff=1.5) has been obtained in Enhanced Dα H-mode. This type of H-mode has enhanced levels of continuous Dα emission and very little or no edge localized mode (ELM) activity, and reduced core particle confinement time relative to ELM-free H-mode. The pellet enhanced performance (PEP) mode is obtained by combining core fueling with pellet injection and core heating. A highly peaked pressure profile with a central value of 8 atmospheres was observed. The steep pressure gradient drives off-axis bootstrap current, resulting in a shear reversed safety factor (q) profile. Suppression of sawteeth appears to be important in maintaining the highly peaked pressure profile. Lithium pellets were found to be more effective than deuterium pellets in raising q0.
H-modes exhibiting improved confinement above the L-mode are achieved in Alcator C-Mod with ICRF and with ohmic heating alone without boronization. Both ELMfree and ELMy H-modes are obtained with total input power from 0.75 to 4.2 MW over a range of densities (0.8 to 3×10 20 m −3 ) and toroidal fields (3 to 8 T). Type III ELMs are often observed to have coherent, high m and n precursor oscillations with frequencies of 100-160 kHz. The threshold power required to achieve the H-mode increases with density and toroidal field, in rough agreement with scalings derived from other tokamaks. The power densities and density times toroidal field products are an order of magnitude larger than in other tokamaks, in the range of values expected for ITER. The L-H and H-L transitions occur at approximately the same edge electron temperature. A low density limit to the H-mode is found at about 8 × 10 19 m −3 . A high midplane neutral pressure limit of about 0.6 mTorr is also observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.