Self-consistent full-size turbulent-transport simulations of the divertor and scrape-off-layer of existing tokamaks have recently become feasible. This enables the direct comparison of turbulence simulations against experimental measurements. In this work, we perform a series of diverted Ohmic L-mode discharges on the TCV tokamak, building a first-of-a-kind dataset for the validation of edge turbulence models. This dataset, referred to as TCV-X21, contains measurements from 5 diagnostic systems from the outboard midplane to the divertor targets -- giving a total of 45 one- and two-dimensional comparison observables in two toroidal magnetic field directions. The experimental dataset is used to validate three flux-driven 3D fluid-turbulence models -- GBS, GRILLIX and TOKAM3X. With each model, we perform simulations of the TCV-X21 scenario, individually tuning the particle and power source rates to achieve a reasonable match of the upstream separatrix value of density and electron temperature. We find that the simulations match the experimental profiles for most observables at the outboard midplane -- both in terms of profile shape and absolute magnitude -- while a comparatively poorer agreement is found towards the divertor targets. The match between simulation and experiment is seen to be sensitive to the value of the resistivity, the heat conductivities, the power injection rate and the choice of sheath boundary conditions. Additionally, despite targeting a sheath-limited regime, the discrepancy between simulations and experiment also suggests that the neutral dynamics should be included. The results of this validation show that turbulence models are able to perform simulations of existing devices and achieve reasonable agreement with experimental measurements. Where disagreement is found, the validation helps to identify how the models can be improved. By publicly releasing the experimental dataset and validation analysis, this work should help to guide and accelerate the development of predictive turbulence simulations of the edge and scrape-off-layer.
The Tokamak à Configuration Variable (TCV) tokamak is in the midst of an upgrade to further its capability to investigate conventional and alternative divertor configurations. To that end, modular and removable gas baffles have been installed to decrease the coupling between the divertor and the plasma core. The baffles primarily seek to suppress the transit of recycling neutrals to closed flux surfaces. A first experimental campaign with the gas baffles has shown that the baffled divertor remains compatible with a wide range of configurations including snowflake and super-X divertors. Plasma density ramp experiments reveal an increase of the neutral pressure in the divertor by up to a factor ×5 compared to the unbaffled divertor and thereby qualitatively confirm simulations with the SOLPS-ITER code that were used to guide the baffle design. Together with a range of new and upgraded divertor diagnostics, the baffled TCV divertor is now used to validate divertor models for ITER and next step devices with particular emphasis on geometric variations.
The tokamak à configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019–20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T e/T i ∼ 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with ‘small’ (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019–20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
A set of high density, highly shaped H-mode discharges has been performed in the TCV tokamak with the aim of assessing the effects of increasing divertor neutral recycling on the properties of upstream inter-ELM scrape-off layer (SOL) profiles and transport. An increase of divertor neutral pressure has been correlated with the evolution of separatrix properties and turbulence level. The latter has been quantified by means of the αt parameter introduced in [T. Eich et al 2020 Nuclear Fusion 60 056016], describing the contribution of resistive-interchange turbulence in the SOL relative to drift wave transport. The analysis reveals a general broadening of the upstream SOL profiles as αt increases, with the SOL power width measured by the vertical IR thermography system increasing significantly. In a similar way, the upstream density profile widens in the near SOL, whereas in the far SOL a density shoulder is observed to progressively form and increase in amplitude. This behaviour is associated with an enhancement of far SOL turbulent transport in the form of blob-filaments travelling radially faster across the far SOL and becoming bigger at higher αt. The detected filaments, evaluated from the fast reciprocating probe at the outer midplane, are determined to mostly belong to the Resistive Ballooning and Resistive X-point regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.