By using bulk magnetization, electron spin resonance (ESR), heat capacity, and neutron scattering techniques, we characterize the thermodynamic and quantum phase diagrams of Ba3Cr2O8. Our ESR measurements indicate that the low field paramagnetic ground state is a mixed state of the singlet and the Sz=0 triplet for H perpendicular c. This suggests the presence of an intradimer Dzyaloshinsky-Moriya (DM) interaction with a DM vector perpendicular to the c axis.
A thorough crystal structure determination at very low temperature of (CuCl)LaNb₂O₇, originally proposed as a spin-1/2 square-lattice antiferromagnet, is reported thanks to the use of single-crystal x-ray diffraction and powder neutron diffraction. State-of-the-art calculations (maximum entropy method) reveal that (CuCl)LaNb₂O₇ is orthorhombic with Pbam symmetry. First-principles calculations demonstrate that the dominant magnetic interactions are antiferromagnetic between fourth nearest neighbors with a Cu-Cl-Cl-Cu exchange path, which lead to the formation of spin singlets. The two strongest interactions between the singlets are ferromagnetic, which makes (CuCl)LaNb₂O₇ the first system of ferromagnetically coupled Shastry-Sutherland quantum spin singlets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.