Results are presented from searches for the standard model Higgs boson in proton-proton collisions at root s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb(-1) at 7 TeV and 5.3 fb(-1) at 8 TeV. The search is performed in five decay modes: gamma gamma, ZZ, W+W-, tau(+)tau(-), and b (b) over bar. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, gamma gamma and ZZ; a fit to these signals gives a mass of 125.3 +/- 0.4(stat.) +/- 0.5(syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved
A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised e ± p scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q 2 , and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions, HERAPDF1.0, with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.
A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tt events under typical 2011 pileup conditions, the average trackreconstruction efficiency for promptly-produced charged particles with transverse momenta of p T > 0.9 GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p T = 100 GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p T , and respectively, 10 µm and 30 µm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10-12 µm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.
Results on two-particle angular correlations for charged particles emitted in pPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV are presented. The analysis uses two million collisions collected with the CMS detector at the LHC. The correlations are studied over a broad range of pseudorapidity, eta, and full azimuth, phi, as a function of charged particle multiplicity and particle transverse momentum, p(T). In high-multiplicity events, a long-range (2 < vertical bar Delta eta vertical bar < 4), near-side (Delta phi approximate to 0) structure emerges in the two-particle Delta eta-Delta phi correlation functions. This is the first observation of such correlations in proton-nucleus collisions, resembling the ridge-like correlations seen in high-multiplicity pp collisions at root s = 7 TeV and in AA collisions over a broad range of center-of-mass energies. The correlation strength exhibits a pronounced maximum in the range of p(T) = 1-1.5 GeV/c and an approximately linear increase with charged particle multiplicity for high-multiplicity events. These observations are qualitatively similar to those in pp collisions when selecting the same observed particle multiplicity, while the overall strength of the correlations is significantly larger in pPb collisions. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved
A detailed description is reported of the analysis used by the CMS Collaboration in the search for the standard model Higgs boson in pp collisions at the LHC, which led to the observation of a new boson. The data sample corresponds to integrated luminosities up to 5.1 fb −1 at √ s = 7 TeV, and up to 5.3 fb −1 at √ s = 8 TeV. The results for five Higgs boson decay modes γγ, ZZ, WW, τ τ , and bb, which show a combined local significance of 5 standard deviations near 125 GeV, are reviewed. A fit to the invariant mass of the two high resolution channels, γγ and ZZ → 4 , gives a mass estimate of 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV. The measurements are interpreted in the context of the standard model Lagrangian for the scalar Higgs field interacting with fermions and vector bosons. The measured values of the corresponding couplings are compared to the standard model predictions. The hypothesis of custodial symmetry is tested through the measurement of the ratio of the couplings to the W and Z bosons. All the results are consistent, within their uncertainties, with the expectations for a standard model Higgs boson. The CMS collaboration 106 Keywords: Hadron-Hadron Scattering IntroductionThe standard model (SM) [1-3] of particle physics accurately describes many experimental results that probe elementary particles and their interactions up to an energy scale of a few hundred GeV [4]. In the SM, the building blocks of matter, the fermions, are comprised of quarks and leptons. The interactions are mediated through the exchange of force carriers: the photon for electromagnetic interactions, the W and Z bosons for weak interactions, and the gluons for strong interactions. All the elementary particles acquire mass through their interaction with the Higgs field [5][6][7][8][9][10][11][12][13]. This mechanism, called the "Higgs" or "BEH" mechanism [5][6][7][8][9][10], is the first coherent and the simplest solution for giving mass to W and Z bosons, while still preserving the symmetry of the Lagrangian. It is realized by introducing a new complex scalar field into the model. By construction, this field allows the W and Z bosons to acquire mass whilst the photon remains massless, and adds to the model one new scalar particle, the SM Higgs boson (H). The Higgs scalar field and its conjugate can also give mass to the fermions, through Yukawa interactions [11][12][13] The discovery or exclusion of the SM Higgs boson is one of the primary scientific goals of the LHC. Previous direct searches at the LHC were based on data from protonproton collisions corresponding to an integrated luminosity of 5.1 fb −1 collected at a centreof-mass energy of 7 TeV. The CMS experiment excluded at 95% CL masses from 127 to 600 GeV [20]. The ATLAS experiment excluded at 95% CL the ranges 111. . Within the remaining allowed mass region, an excess of events between 2 and 3 standard deviations (σ) near 125 GeV was reported by both experiments. In 2012, the proton-proton centre-of-mass energy was increased to 8 TeV, and by the end of June, an...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.