Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton-proton collisions collected at √ s = 13 TeV with the ATLAS detectorThe ATLAS Collaboration Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 36.7 fb −1 at a centre-of-mass energy √ s = 13 TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extradimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model. c 2017 CERN for the benefit of the ATLAS Collaboration. 1 The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). The transverse energy is defined as3 Simulated Monte Carlo (MC) events are used for optimizing the search strategy [23], and for the signal and background modelling studies detailed in Sections 5 and 6, respectively. Interference effects between the resonant signal and the background processes are neglected.The spin-0 signal MC samples were generated using the effective-field-theory approach implemented in MadGraph5_aMC@NLO [24] version 2.3.3 at next-to-leading order (NLO) in quantum chromodynamics (QCD). From the Higgs characterization framework [25], CP-even dimension-five operators coupling the new resonance to gluons and photons were included. Samples were generated with the NNPDF3.0 NLO parton distribution functions (PDFs) [26], using the A14 set of tuned parameters (tune) of Pythia 8.186 [27,28] for the parton-shower and hadronization simulation. Simulated samples were produced for fixed values of the mass and width of the assumed resonance, spanning the range 200-2400 GeV for the mass, and the range from 4 MeV to 10% of the mass for the decay width. Choosing an improved signal model with an event generator different from the one used in Ref.[1] provides a description of the signal which is less sensitive to modelling effects from the off-shell region. The impact of this change is only visible in scenarios with a large signal decay width, with mass values at the TeV scale.Spin-2 signal samples for the RS1 model were generated using Pythia 8.186, with the NNPDF23LO PDF set [29] and the A1...
This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 fb −1 of pp collisions at √ s = 13 TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns. Keywords: Hadron-Hadron scattering (experiments)ArXiv ePrint: 1712.02118Open Access, Copyright CERN, for the benefit of the ATLAS Collaboration. Article funded by SCOAP 3 .https://doi.org/10.1007/JHEP06 (2018) [7], SUSY particles are produced in pairs and decay such that their final products consist only of SM particles and the stable lightest supersymmetric particle (LSP). In many supersymmetric models, the supersymmetric partners of the SM W boson fields, the wino fermions, are the lightest gaugino states. In this case, the lightest of the charged mass eigenstates, a chargino, and the lightest of the neutral mass eigenstates, a neutralino, are both almost pure wino and nearly mass-degenerate. As a result, the lightest chargino can have a lifetime long enough that it can reach the AT-LAS detector before decaying. For example, anomaly-mediated supersymmetry breaking (AMSB) scenarios [8,9] naturally predict a pure wino LSP, which is a dark-matter candidate. The mass-splitting between the charged and neutral wino (∆mχ 1 ) in such models is suppressed at tree level by the approximate custodial symmetry; it has been calculated at the two-loop level to be around 160 MeV [10], corresponding to a chargino lifetime of about 0.2 ns [11]. This prediction for the value of the lifetime is actually a general feature of models with a wino LSP: within the generated models of the ATLAS phenomenological Minimal Supersymmetric Standard Model (pMSSM) scan [12] that have a wino-like LSP, about 70% have a charged-wino lifetime between 0.15 ns and 0.25 ns. Most of the models in the other 30% have a larger mass-splitting (and therefore the charged wino has a shorter lifetime) due to a non-decoupled higgsino mass. The search presented here is sensitive to a wide range of lifetimes, from 10 ps to 10 ns, and reaches maximum sensitivity for lifetimes around 1 ns.The decay products of SUSY particles that are strongly mass-degenerate with the lightest neutralino leave little visible energy in the detector. T...
A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. The analysis in this paper uses 36.1 fb −1 of proton-proton collision data at ffiffi ffi s p ¼ 13 TeV recorded in 2015-2016. The search employs techniques for reconstructing vertices of long-lived particles decaying into jets in the muon spectrometer exploiting a two-vertex strategy and a novel technique that requires only one vertex in association with additional activity in the detector that improves the sensitivity for longer lifetimes. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.