The mission of the National Spherical Torus Experiment (NSTX) is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high β operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale length. Results from n = 3 braking studies are consistent with the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of high harmonic fast-waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap current fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance l i ∼ 0.4 with strong shaping (κ ∼ 2.7, δ ∼ 0.8) with β N approaching the with-wall β-limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction f NI ∼ 71%. Instabilities driven by super-Alfvénic ions will be an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfvénic. Linear toroidal Alfvén eigenmode thresholds and appreciable fast ion loss during multi-mode bursts are measured and these results are compared with theory. The impact of n > 1 error fields on stability is an important result for ITER. Resistive wall mode/resonant field amplification feedback combined with n = 3 error field control was used on NSTX to maintain plasma rotation with β above the no-wall limit. Other highlights are results of lithium coating experiments, momentum confinement studies, scrape-off layer width scaling, demonstration of divertor heat load mitigation in strongly shaped plasmas and coupling of coaxial helicity injection plasmas to ohmic heating ramp-up. These results advance the ST towards next step fusion energy devices such as NHTX and ST-CTF.
The National Spherical Torus Experiment (NSTX) has made considerable progress in advancing the scientific understanding of high performance long-pulse plasmas needed for future spherical torus (ST) devices and ITER. Plasma durations up to 1.6 s (five current redistribution times) have been achieved at plasma currents of 0.7 MA with non-inductive current fractions above 65% while simultaneously achieving β T and β N values of 17% and 5.7 (%m T MA −1 ), respectively. A newly available motional Stark effect diagnostic has enabled validation of currentdrive sources and improved the understanding of NSTX 'hybrid'-like scenarios. In MHD research, ex-vessel radial field coils have been utilized to infer and correct intrinsic EFs, provide rotation control and actively stabilize the n = 1 resistive wall mode at ITER-relevant low plasma rotation values. In transport and turbulence research, the low aspect ratio and a wide range of achievable β in the NSTX provide unique data for confinement scaling studies, and a new microwave scattering diagnostic is being used to investigate turbulent density fluctuations with wavenumbers extending from ion to electron gyro-scales. In energetic particle research, cyclic neutron rate drops have been associated with the destabilization of multiple large toroidal Alfven eigenmodes (TAEs) analogous to the 'sea-of-TAE' modes predicted for ITER, and three-wave coupling processes have been observed for the first time. In boundary physics research, advanced shape control has enabled studies of the role of magnetic balance in H-mode access and edge localized mode stability. Peak divertor heat flux has been reduced by a factor of 5 using an H-mode-compatible radiative divertor, and lithium conditioning has demonstrated particle pumping and results in improved thermal confinement. Finally, non-solenoidal plasma start-up experiments have achieved plasma currents of 160 kA on closed magnetic flux surfaces utilizing coaxial helicity injection.
The National Spherical Torus Experiment ͑NSTX͒ has explored the effects of shaping on plasma performance as determined by many diverse topics including the stability of global magnetohydrodynamic ͑MHD͒ modes ͑e.g., ideal external kinks and resistive wall modes͒, edge localized modes ͑ELMs͒, bootstrap current drive, divertor flux expansion, and heat transport. Improved shaping capability has been crucial to achieving  t ϳ 40%. Precise plasma shape control has been achieved on NSTX using real-time equilibrium reconstruction. NSTX has simultaneously achieved elongation ϳ 2.8 and triangularity ␦ ϳ 0.8. Ideal MHD theory predicts increased stability at high values of shaping factor S ϵ q 95 I p / ͑aB t ͒, which has been observed at large values of the S ϳ 37͓MA/ ͑m·T͔͒ on NSTX. The behavior of ELMs is observed to depend on plasma shape. A description of the ELM regimes attained as shape is varied will be presented. Increased shaping is predicted to increase the bootstrap fraction at fixed I p . The achievement of strong shaping has enabled operation with 1 s pulses with I p = 1 MA, and for 1.6 s for I p = 700 kA. Analysis of the noninductive current fraction as well as empirical analysis of the achievable plasma pulse length as elongation is varied will be presented. Data are presented showing a reduction in peak divertor heat load due to increasing in flux expansion.
The major objective of the National Spherical Torus Experiment (NSTX) is to understand basic toroidal confinement physics at low aspect ratio and high βT in order to advance the spherical torus (ST) concept. In order to do this, NSTX utilizes up to 7.5 MW of neutral beam injection, up to 6 MW of high harmonic fast waves (HHFWs), and it operates with plasma currents up to 1.5 MA and elongations of up to 2.6 at a toroidal field up to 0.45 T. New facility, and diagnostic and modelling capabilities developed over the past two years have enabled the NSTX research team to make significant progress towards establishing this physics basis for future ST devices. Improvements in plasma control have led to more routine operation at high elongation and high βT (up to ∼40%) lasting for many energy confinement times. βT can be limited by either internal or external modes. The installation of an active error field (EF) correction coil pair has expanded the operating regime at low density and has allowed for initial resonant EF amplification experiments. The determination of the confinement and transport properties of NSTX plasmas has benefitted greatly from the implementation of higher spatial resolution kinetic diagnostics. The parametric variation of confinement is similar to that at conventional aspect ratio but with values enhanced relative to those determined from conventional aspect ratio scalings and with a BT dependence. The transport is highly dependent on details of both the flow and magnetic shear. Core turbulence was measured for the first time in an ST through correlation reflectometry. Non-inductive start-up has been explored using PF-only and transient co-axial helicity injection techniques, resulting in up to 140 kA of toroidal current generated by the latter technique. Calculated bootstrap and beam-driven currents have sustained up to 60% of the flat-top plasma current in NBI discharges. Studies of HHFW absorption have indicated parametric decay of the wave and associated edge thermal ion heating. Energetic particle modes, most notably toroidal Alfvén eigenmodes and fishbone-like modes result in fast particle losses, and these instabilities may affect fast ion confinement on devices such as ITER. Finally, a variety of techniques has been developed for fuelling and power and particle control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.