We present results for the charged-particle multiplicity distribution at midrapidity in Au-Au collisions at square root of [s(NN)] = 130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find dN(ch)/d eta(vertical line eta = 0) = 622+/-1(stat)+/-41(syst). The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.
Data from Au + Au interactions at sqrt[s(NN)]=130 GeV, obtained with the PHENIX detector at the Relativistic Heavy-Ion Collider, are used to investigate local net charge fluctuations among particles produced near midrapidity. According to recent suggestions, such fluctuations may carry information from the quark-gluon plasma. This analysis shows that the fluctuations are dominated by a stochastic distribution of particles, but are also sensitive to other effects, like global charge conservation and resonance decays.
A measurement of direct photon production in 208 Pb+ 208 Pb collisions at 158 A GeV has been carried out in the CERN WA98 experiment. The invariant yield of direct photons in central collisions is extracted as a function of transverse momentum in the interval 0.5 < pT < 4 GeV/c. A significant direct photon signal, compared to statistical and systematical errors, is seen at pT > 1.5 GeV/c. The results constitute the first observation of direct photons in ultrarelativistic heavy-ion collisions which could be significant for diagnosis of quark gluon plasma formation. 25.75.+r,13.40.-f,24.90.+p 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.