[1] Neutron data observed using the Neutron Spectrometer aboard 2001 Mars Odyssey provide a lower limit to the global inventory of Martian water-equivalent hydrogen. Hydrogen-rich deposits ranging between about 20% and 100% water-equivalent by mass are found poleward of ±50°latitude, and less rich, but significant, deposits are found at near-equatorial latitudes. The equatorial deposits between ±45°latitude range between 2% and 10% water-equivalent hydrogen by mass and reach their maximum in two regions that straddle the 0-km elevation contour. Higher water abundances, up to $11%, are required in subsurface regolith of some equatorial regions if the upper 10 g/cm 2 of regolith is desiccated, as suggested on average by comparison of epithermal and fast neutron data. The hydrogen contents of surface soils in the latitude range between 50°and 80°north and south are equal within data uncertainties. A lower-limit estimate of the global inventory of near surface hydrogen amounts to a global water layer about 14 cm thick if the reservoir sampled from orbit is assumed to be 1 m thick.
We report maps of the concentrations of H, Si, Cl, K, Fe, and Th as determined by the Gamma Ray Spectrometer (GRS) on board the 2001 Mars Odyssey Mission for ±∼45° latitudes. The procedures by which the spectra are processed to yield quantitative concentrations are described in detail. The concentrations of elements determined over the locations of the various Mars landers generally agree well with the lander values except for Fe, although the mean of the GRS Fe data agrees well with that of Martian meteorites. The water‐equivalent concentration of hydrogen by mass varies from about 1.5% to 7.5% (by mass) with the most enriched areas being near Apollinaris Patera and Arabia Terra. Cl shows a distribution similar to H over the surface except that the Cl content over Medusae Fossae is much greater than elsewhere. The map of Fe shows enrichment in the northern lowlands versus the southern highlands. Silicon shows only very modest variation over the surface with mass fractions ranging from 19% to 22% over most of the planet, though a significant depletion in Si is noted in a region west of Tharsis Montes and Olympus Mons where the Si content is as low as 18%. K and Th show a very similar pattern with depletions associated with young volcanic deposits and enrichments associated with the TES Surface Type‐2 material. It is noted that there appears to be no evidence of significant globally distributed thick dust deposits of uniform composition.
We report the concentrations of K, Th, and Fe on the Martian surface, as determined by the gamma ray spectrometer onboard the 2001 Mars Odyssey spacecraft. K and Th are not uniformly distributed on Mars. K ranges from 2000 to 6000 ppm; Th ranges from 0.2 to 1 ppm. The K/Th ratio varies from 3000 to 9000, but over 95% of the surface has K/Th between 4000 and 7000. Concentrations of K and Th are generally higher than those in basaltic Martian meteorites (K = 200–2600 ppm; Th = 0.1–0.7 ppm), indicating that Martian meteorites are not representative of the bulk crust. The average K/Th in the crust is 5300, consistent with the Wänke‐Dreibus model composition for bulk silicate Mars. Fe concentrations support the idea that bulk Mars is enriched in FeO compared to Earth. The differences in K/Th and FeO between Earth and Mars are consistent with the planets accreting from narrow feeding zones. The concentration of Th on Mars does not vary as much as it does on the Moon (where it ranges from 0.1 to 12 ppm), suggesting that the primary differentiation of Mars differed from that of the Moon. If the average Th concentration (0.6 ppm) of the surface is equal to the average of the entire crust, the crust cannot be thicker than about 118 km. If the crust is about 57 km thick, as suggested by geophysical studies, then about half the Th is concentrated in the crust.
[1] Neutron spectroscopy data acquired by Mars Odyssey are analyzed to determine the abundance and depth of near-surface water ice as a function of latitude in the southern hemisphere as well as the inventory of CO 2 in the south polar residual cap. The surface is modeled as a semi-infinite, water-rich permafrost layer covered by desiccated material, which is consistent with theoretical models of ground ice stability. Latitude-dependent parameters, water abundance and depth, are determined from zonally averaged neutron counting data. Spatial mixing of the output of neutrons from regions within the footprint of the spectrometer is modeled, and asymmetrical features such as the residual cap are included in the analysis. Absorption of thermal neutrons by major elements other than hydrogen is found to have a significant influence on the determination of water abundance. Poleward of À60°, the water-rich layer contains 60% ± 10% water by weight (70% to 85% by volume) and is covered by less than 15 g/cm 2 ± 5 g/cm 2 of dry material. The volume fraction of water is generally higher than can be accommodated in the pore space of surface soils, which implies that water vapor diffusion processes alone cannot explain the observations. Alternatives for the formation of the water-rich layer are discussed. Results of our analysis of the residual-cap CO 2 inventory support conclusions that the atmosphere is not buffered by a larger reservoir of surface CO 2 at the poles and that Mars' total CO 2 inventory is well represented by the present atmospheric mass.
K/Th determined by the Mars Odyssey Gamma Ray Spectrometer varies by a factor of 3 on Mars (3000 to 9000), but over 95% of the surface area has K/Th between 4000 and 7000. K/Th is distinctly lower than average in some areas, including west of Olympus Mons in the Amazonis Planitia, the region around Memnonia Fossae, Chryse Planitia, southeastern Arabia Terra, Syrtis Major Planum, and northwest of Apollinaris Patera. On the other hand, K/Th is distinctly higher than average in other areas, including the central part of Valles Marineris and the surrounding highlands, and in the northern part of Hellas. The generally modest variation in K/Th may be explained by inherent variations in igneous rocks and by variations in the extent of aqueous alteration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.