Over the past several years, the inherent scaling limitations of silicon (Si) electron devices have fuelled the exploration of alternative semiconductors, with high carrier mobility, to further enhance device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been actively studied: such devices combine the high mobility of III-V semiconductors and the well established, low-cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored-but besides complexity, high defect densities and junction leakage currents present limitations in this approach. Motivated by this challenge, here we use an epitaxial transfer method for the integration of ultrathin layers of single-crystal InAs on Si/SiO(2) substrates. As a parallel with silicon-on-insulator (SOI) technology, we use 'XOI' to represent our compound semiconductor-on-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high-quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsO(x) layer (~1 nm thick). The fabricated field-effect transistors exhibit a peak transconductance of ~1.6 mS µm(-1) at a drain-source voltage of 0.5 V, with an on/off current ratio of greater than 10,000.
In this paper, we report a successful realization and integration of a gold two-dimensional hole array (2DHA) structure with semiconductor InAs quantum dot (QD). We show experimentally that a properly designed 2DHA-QD photodetector can facilitate a strong plasmonic-QD interaction, leading to a 130% absolute enhancement of infrared photoresponse at the plasmonic resonance. Our study indicates two key mechanisms for the performance improvement. One is an optimized 2DHA design that permits an efficient coupling of light from the far-field to a localized plasmonic mode. The other is the close spatial matching of the QD layers to the wave function extent of the plasmonic mode. Furthermore, the processing of our 2DHA is amenable to large scale fabrication and, more importantly, does not degrade the noise current characteristics of the photodetector. We believe that this demonstration would bring the performance of QD-based infrared detectors to a level suitable for emerging surveillance and medical diagnostic applications.
Abstract:The quality factor (Q), mode volume (V eff ), and roomtemperature lasing threshold of microdisk cavities with embedded quantum dots (QDs) are investigated. Finite element method simulations of standing wave modes within the microdisk reveal that V eff can be as small as 2(λ/n) 3 while maintaining radiation-limited Qs in excess of 10 5 . Microdisks with a 2 µm diameter are fabricated in an AlGaAs material containing a single layer of InAs QDs with peak emission at λ = 1317 nm. For devices with V eff ∼2 (λ/n) 3 , Qs as high as 1.2×10 5 are measured passively in the 1.4 µm band, using an optical fiber taper waveguide. Optical pumping yields laser emission in the 1.3 µm band, with room temperature, continuous-wave thresholds as low as 1 µW of absorbed pump power. Out-coupling of the laser emission is also shown to be significantly enhanced through the use of optical fiber tapers, with a laser differential efficiency as high as ξ ∼ 16% and out-coupling efficiency in excess of 28% measured after accounting for losses in the optical fiber system.
The authors report on a type-II InAs∕GaSb strained layer superlattice (SLS) photodetector using an nBn design that can be used to eliminate both Shockley-Read-Hall generation currents and surface recombination currents, leading to a higher operating temperature. We present such a SLS based structure with a cutoff wavelength of 5.2μm at room temperature. Processed devices exhibited a quantum efficiency around 18%, and a shot-noise-limited specific detectivity ∼109Jones at 4.5μm and 300K, which are comparable to the state of the art values reported for p-i-n photodiodes based on strained layer superlattices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.