[1] We discuss results of a superposed epoch analysis of dipolarization fronts, rapid (dt < 30 s), high-amplitude (dB z > 10 nT) increases in the northward magnetic field component, observed during six Time History of Events and Macroscale Interactions during Substorms (THEMIS) conjunction events. All six fronts propagated earthward; time delays at multiple probes were used to determine their propagation velocity. We define typical magnetic and electric field and plasma parameter variations during dipolarization front crossings and estimate their characteristic gradient scales. The study reveals (1) a rapid 50% decrease in plasma density and ion pressure, (2) a factor of 2-3 increase in high-energy (30-200 keV) electron flux and electron temperature, and (3) transient enhancements of ∼5 mV/m in duskward and earthward electric field components. Gradient scales of magnetic field, plasma density, and particle flux were found to be comparable to the ion thermal gyroradius. Current densities associated with the B z increase are, on average, 20 nA/m 2 , 5-7 times larger than the current density in the cross-tail current sheet. Because j · E > 0, the dipolarization fronts are kinetic-scale dissipative regions with Joule heating rates of 10% of the total bursty bulk flow energy.
We report measurements of resolved 12 CH 2 D 2 and 13 CH 3 D at natural abundances in a variety of methane gases produced naturally and in the laboratory. The ability to resolve 12 CH 2 D 2 from 13 CH 3 D provides unprecedented insights into the origin and evolution of CH 4. The results identify conditions under which either isotopic bond order disequilibrium or equilibrium are expected. Where equilibrium obtains, concordant Δ 12 CH 2 D 2 and Δ 13 CH 3 D temperatures can be used reliably for thermometry. We find that concordant temperatures do not always match previous hypotheses based on indirect estimates of temperature of formation nor temperatures derived from CH 4/ H 2 D/H exchange, underscoring the importance of reliable thermometry based on the CH 4 molecules themselves. Where Δ 12 CH 2 D 2 and Δ 13 CH 3 D values are inconsistent with thermodynamic equilibrium, temperatures of formation derived from these species are spurious. In such situations, while formation temperatures are unavailable, disequilibrium isotopologue ratios nonetheless provide novel information about the formation mechanism of the gas and the presence or absence of multiple sources or sinks. In particular, disequilibrium isotopologue ratios may provide the means for differentiating between methane produced by abiotic synthesis versus biological processes. Deficits in 12 CH 2 D 2 compared with equilibrium values in CH 4 gas made by surface-catalyzed abiotic reactions are so large as to point towards a quantum tunneling origin. Tunneling also accounts for the more moderate depletions in 13 CH 3 D that accompany the low 12 CH 2 D 2 abundances produced by abiotic reactions. The tunneling signature may prove to be an important tracer of abiotic methane formation, especially where it is preserved by dissolution of gas in cool hydrothermal systems (e.g., Mars). Isotopologue signatures of abiotic methane production can be erased by infiltration of microbial communities, and Δ 12 CH 2 D 2 values are a key tracer of microbial recycling.
The regional impact of Land-Use Land-cover Change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project Permalink https://escholarship.org/uc/item/5xd326c1 Journal Climate Dynamics, 47(11) Abstract The population of the Sahel region of West Africa has approximately doubled in the past 50 years, and could potentially double again by the middle of this century. This has led to the northward expansion of agricultural areas at the expense of natural savanna, leading to widespread land use -land cover change (LULCC). Because there is strong evidence of significant surfaceatmosphere coupling in this region, one of the main goals of the West African Monsoon Modeling and Evaluation project phase II is to provide basic understanding of LULCC on the regional climate, and to evaluate the sensitivity of the seasonal variability of the West African Monsoon to LULCC. The prescribed LULCC is based on the changes from 1950 through 1990, representing a maximum feasible degradation scenario in the past half century. It is emphasis on prioritizing a consistent impact of LULCC on the surface biophysical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.