We present a detailed analysis of week-long simultaneous observations of the blazar Mrk 421 at 2Y60 keV X-rays (RXTE ) and TeV -rays ( Whipple and HEGRA) in 2001. Accompanying optical monitoring was performed with the Mt. Hopkins 48 inch telescope. The unprecedented quality of this data set enables us to establish the existence of the correlation between the TeV and X-ray luminosities, and also to start unveiling some of its characteristics, in particular its energy dependence and time variability. The source shows strong variations in both X-ray and -ray bands, which are highly correlated. No evidence of an X-ray/-ray interband lag is found on the full week data set, with P 3 ks. A detailed analysis of the March 19 flare, however, reveals that data are not consistent with the peak of the outburst in the 2Y4 keV X-ray and TeV band being simultaneous. We estimate a 2:1 AE 0:7 ks TeV lag. The amplitudes of the X-ray and -ray variations are also highly correlated, and the TeV luminosity increases more than linearly with respect to the X-ray one. The high degree of correlation lends further support to the standard model in which a unique electron population produces the X-rays by synchrotron radiation and the -ray component by inverse Compton scattering. However, the finding that for the individual best observed flares the -ray flux scales approximately quadratically with respect to the X-ray flux poses a serious challenge to emission models for TeV blazars, as it requires rather special conditions and/or fine tuning of the temporal evolution of the physical parameters of the emission region. We briefly discuss the astrophysical consequences of these new findings in the context of the competing models for the jet emission in blazars.
The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV γ-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.
We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (10 44 erg s −1) constitutes only a small fraction (∼10 −3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude.
We report results from an intensive multiwavelength monitoring campaign on the TeV blazar Mrk 421 over the period of [2003][2004]. The source was observed simultaneously at TeV energies with the Whipple 10 m telescope and at X-ray energies with the Rossi X-Ray Timing Explorer (RXTE) during each clear night within the Whipple observing windows. Supporting observations were also frequently carried out at optical and radio wavelengths to provide simultaneous or contemporaneous coverages. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail, including cross-band correlation and broadband spectral variability, over a wide range of flux. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales at both X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux did during a giant flare (or outburst) in 2004 (with the peak flux reaching $135 mcrab in X-rays, as seen by the RXTE ASM, and $3 crab in gamma rays). Such a difference in the development of the flare presents a further challenge to both the leptonic and hadronic emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in the optical seems to be comparable to that in the radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured spectral energy distributions (SEDs) with a one-zone synchrotron self-Compton model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed.
LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy -rays. The system was observed over several orbital cycles (between 2006 September and 2007 February) with the VERITAS array of imaging air Cerenkov telescopes. A signal of -rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of À ¼ 2:40 AE 0:16 stat AE 0:2 sys and a flux above 300 GeV corresponding to 15%-20% of the flux from the Crab Nebula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.