The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80-300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ß3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.
Using a statistically rigorous analysis method, we place limits on the existence of an isotropic stochastic gravitational wave background using pulsar timing observations. We consider backgrounds whose characteristic strain spectra may be described as a power-law dependence with frequency. Such backgrounds include an astrophysical background produced by coalescing supermassive black-hole binary systems and cosmological backgrounds due to relic gravitational waves and cosmic strings. Using the best available data, we obtain an upper limit on the energy density per unit logarithmic frequency interval of SMBH g 1/(8 yr) ½ h 2 1:9 ; 10 À8 for an astrophysical background that is 5 times more stringent than the earlier limit of 1:1 ; 10 À7 found by Kaspi and colleagues. We also provide limits on a background due to relic gravitational waves and cosmic strings of relic g 1/(8 yr) ½ h 2 2:0 ; 10 À8 and cs g 1/(8 yr)½ h 2 1:9 ; 10 À8 , respectively. All of the quoted upper limits correspond to a 0.1% false alarm rate together with a 95% detection rate. We discuss the physical implications of these results and highlight the future possibilities of the Parkes Pulsar Timing Array project. We find that our current results can (1) constrain the merger rate of supermassive binary black hole systems at high redshift, (2) rule out some relationships between the black hole mass and the galactic halo mass, (3) constrain the rate of expansion in the inflationary era, and (4) provide an upper bound on the dimensionless tension of a cosmic string background.
Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASA's wprojection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.
Using the Murchison Widefield Array (MWA), the low-frequency Square Kilometre Array (SKA1 LOW) precursor located in Western Australia, we have completed the GaLactic and Extragalactic All-sky MWA (GLEAM) survey, and present the resulting extragalactic catalogue, utilising the first year of observations. The catalogue covers 24, 831 square degrees, over declinations south of +30 • and Galactic latitudes outside 10 • of the Galactic plane, excluding some areas such as the Magellanic Clouds. It contains 307,455 radio sources with 20 separate flux density measurements across 72-231 MHz, selected from a time-and frequency-integrated image centred at 200 MHz, with a resolution of ≈ 2 . Over the catalogued region, we estimate that the catalogue is 90 % complete at 170 mJy, and 50 % complete at 55 mJy, and large areas are complete at even lower flux density levels. Its reliability is 99.97 % above the detection threshold of 5σ, which itself is typically 50 mJy. These observations constitute the widest fractional bandwidth and largest sky area survey at radio frequencies to date, and calibrate the low frequency flux density scale of the southern sky to better than 10 %. This paper presents details of the flagging, imaging, mosaicking, and source extraction/characterisation, as well as estimates of the completeness and reliability. All source measurements and images are available online . This is the first in a series of publications describing the GLEAM survey results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.