Abstract.We have studied data from two satellite occultation instruments in order to generate a high vertical resolution homogeneous ozone time series of 26 yr. The Stratospheric Aerosol and Gas Experiment (SAGE) II solar occultation instrument and the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument measured ozone profiles in the stratosphere and mesosphere from 1984-2005 and 2002-2012, respectively. Global coverage, good vertical resolution, and the self-calibrating measurement method make data from these instruments valuable for the detection of changes in vertical distribution of ozone over time. As both instruments share a common measurement period from 2002-2005, it is possible to inter-calibrate the data sets. We investigate how well these measurements agree with each other and combine all the data to produce a new stratospheric ozone profile data set. Above 55 km, SAGE II measurements show much less ozone than the GOMOS nighttime measurements as a consequence of the well-known diurnal variation of ozone in the mesosphere. Between 35-55 km, SAGE II sunrise and sunset measurements differ from GOMOS' measurements to different extents. Sunrise measurements show 2 % less ozone than GOMOS, whereas sunset measurements show 4 % more ozone than GOMOS. Differences can be explained qualitatively by the diurnal variation of ozone in the stratosphere recently observed by SMILES and modeled by chemical transport models. Between 25-35 km, SAGE II sunrise and sunset measurements and GOMOS measurements agree within 1 %.The observed ozone bias between collocated measurements of SAGE II sunrise/sunset and GOMOS night measurements is used to align the two data sets. The combined data set covers the time period 1984-2011, latitudes 60 • S-60 • N, and the altitude range of 20-60 km. Profile data are given on a 1 km vertical grid, and with a resolution of 1 month in time and 10 • in latitude. The combined ozone data set is analyzed by fitting a time series model to the data. We assume a linear trend with an inflection point (so-called "hockey stick" form). The best estimate for the point of inflection was found to be the year 1997 for ozone between altitudes 35 and 45 km. At all latitudes and altitudes from 35 to 50 km we find a clear change in ozone trend before and after the inflection time. From 38 to 45 km, a negative trend of 4 % per decade (statistically significant at 95 % level) at the equator has changed to a small positive trend of 0-2 % per decade. At mid-latitudes, the negative trend of 4-8 % per decade has changed to to a small positive trend of 0-2 % per decade. At mid-latitudes near 20 km, the ozone loss has still increased whereas in the tropics a recovery is ongoing.
Abstract. We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NO x = NO + NO 2 ), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) dur- Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NO x mixing ratio at the uppermost model layer and low vertical resolution. In March-April, after the ES event, however, modelled mesospheric and stratospheric NO x distributions deviate significantly from the observations. The too-fast and early downward propagation of the NO x tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2-0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, uppermesospheric temperatures (at 0.05-0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NO x fluxes. As a consequence, the magnitude of the simulated NO x tongue is generally underestimated by these models. Descending NO x amounts simulated with mediumtop models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NO x upper boundary condition is applied. In general, the intercomparison demonstrates the ability of stateof-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NO x , CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.