Context. Despite the low cosmic abundance of deuterium (D/H ∼ 10 −5 ), high degrees of deuterium fractionation in molecules are observed in star-forming regions with enhancements that can reach 13 orders of magnitude, a level that current models have difficulty accounting for. Aims. Multi-isotopologue observations are a very powerful constraint for chemical models. The aim of our observations is to understand the processes that form the observed high abundances of methanol and formaldehyde in low-mass protostellar envelopes (gas-phase processes? chemistry on the grain surfaces?), as well as to better constrain the chemical models.Methods. With the IRAM 30 m single-dish telescope, we observed deuterated formaldehyde (HDCO and D 2 CO) and methanol (CH 2 DOH, CH 3 OD, and CHD 2 OH) towards a sample of seven low-mass class 0 protostars. Using population diagrams, we then derived the fractionation ratios of these species (abundance ratio between the deuterated molecule and its main isotopologue) and compared them to the predictions of grain chemistry models. Results. These protostars show a similar level of deuteration as in IRAS 16293−2422, where doubly-deuterated methanol -and even triply-deuterated methanol -were first detected. Our observations point to the formation of methanol on the grain surfaces, while formaldehyde formation cannot be fully pinned down. While none of the scenarii can be excluded (gas-phase or grain chemistry formation), they both seem to require abstraction reactions to reproduce the observed fractionations.
Accurate measurements of the physical structure of protoplanetary discs are critical inputs for planet formation models. These constraints are traditionally established via complex modelling of continuum and line observations. Instead, we present an empirical framework to locate the CO isotopologue emitting surfaces from high spectral and spatial resolution ALMA observations. We apply this framework to the disc surrounding IM Lupi, where we report the first direct, i.e. model independent, measurements of the radial and vertical gradients of temperature and velocity in a protoplanetary disc. The measured disc structure is consistent with an irradiated self-similar disc structure, where the temperature increases and the velocity decreases towards the disc surface. We also directly map the vertical CO snow line, which is located at about one gas scale height at radii between 150 and 300 au, with a CO freeze-out temperature of 21 ± 2 K. In the outer disc (> 300 au), where the gas surface density transitions from a power law to an exponential taper, the velocity rotation field becomes significantly sub-Keplerian, in agreement with the expected steeper pressure gradient. The sub-Keplerian velocities should result in a very efficient inward migration of large dust grains, explaining the lack of millimetre continuum emission outside of 300 au. The sub-Keplerian motions may also be the signature of the base of an externally irradiated photo-evaporative wind. In the same outer region, the measured CO temperature above the snow line decreases to ≈ 15 K because of the reduced gas density, which can result in a lower CO freeze-out temperature, photo-desorption, or deviations from local thermodynamic equilibrium.
Context. Understanding the formation mechanisms of protoplanetary disks and multiple systems and also their pristine properties are key questions for modern astrophysics. The properties of the youngest disks, embedded in rotating infalling protostellar envelopes, have largely remained unconstrained up to now. Aims. We aim to observe the youngest protostars with a spatial resolution that is high enough to resolve and characterize the progenitors of protoplanetary disks. This can only be achieved using submillimeter and millimeter interferometric facilities. In the framework of the IRAM Plateau de Bure Interferometer survey CALYPSO, we have obtained subarcsecond observations of the dust continuum emission at 231 GHz and 94 GHz for a sample of 16 solar-type Class 0 protostars. Methods. In an attempt to identify disk-like structures embedded at small scales in the protostellar envelopes, we modeled the dust continuum emission visibility profiles using Plummer-like envelope models and envelope models that include additional Gaussian disk-like components.Results. Our analysis shows that in the CALYPSO sample, 11 of the 16 Class 0 protostars are better reproduced by models including a disk-like dust continuum component contributing to the flux at small scales, but less than 25% of these candidate protostellar disks are resolved at radii > 60 au. Including all available literature constraints on Class 0 disks at subarcsecond scales, we show that our results are representative: most (> 72% in a sample of 26 protostars) Class 0 protostellar disks are small and emerge only at radii < 60 au. We find a multiplicity fraction of the CALYPSO protostars < ∼ 57% ± 10% at the scales 100-5000 au, which generally agrees with the multiplicity properties of Class I protostars at similar scales. Conclusions. We compare our observational constraints on the disk size distribution in Class 0 protostars to the typical disk properties from protostellar formation models. If Class 0 protostars contain similar rotational energy as is currently estimated for prestellar cores, then hydrodynamical models of protostellar collapse systematically predict a high occurrence of large disks. Our observations suggest that these are rarely observed, however. Because they reduce the centrifugal radius and produce a disk size distribution that peaks at radii < 100 au during the main accretion phase, magnetized models of rotating protostellar collapse are favored by our observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.