Advancement in the science and technology of random metallic nanowire (MNW) networks is crucial for their appropriate integration in many applications including transparent electrodes for optoelectronics and transparent film heaters. We have recently highlighted the discontinuous activation of efficient percolating pathways (EPPs) for networks having densities slightly above the percolation threshold. Such networks exhibit abrupt drops of electrical resistance when thermal or electrical annealing is performed, which gives rise to a "geometrically quantized percolation". In this Letter, lock-in thermography (LiT) is used to provide visual evidence of geometrical quantized percolation: when low voltage is applied to the network, individual "illuminated pathways" can be detected, and new branches get highlighted as the voltage is incrementally increased. This experimental approach has allowed us to validate our original model and map the electrical and thermal distributions in silver nanowire (AgNW) networks. We also study the effects of electrode morphology and wire dimensions on quantized percolation. Furthermore, we demonstrate that the network failure at high temperature can also be governed by a quantized increase of the electrical resistance, which corresponds to the discontinuous destruction of individual pathways (antipercolation). More generally, we demonstrate that LiT is a promising tool for the detection of conductive subclusters as well as hot spots in AgNW networks.
This paper focuses on the EM induced voiding in a line ended by a TSV, and proposes an analytical model based on the link between the monitored electrical resistance increase and the matter depletion flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.