We present the experimental demonstration of a subaperture compression scheme achieved in the PETAL (PETawatt Aquitaine Laser) facility. We evidence that by dividing the beam into small subapertures fitting the available grating size, the sub-beam can be individually compressed below 1 ps, synchronized below 50 fs and then coherently added thanks to a segmented mirror.
The Petawatt Aquitaine Laser (PETAL) facility was designed and constructed by the French Commissariat à l'énergie atomique et aux énergies alternatives (CEA) as an additional PW beamline to the Laser MegaJoule (LMJ) facility. PETAL energy is limited to 1 kJ at the beginning due to the damage threshold of the final optics. In this paper, we present the commissioning of the PW PETAL beamline. The first kJ shots in the amplifier section with a large spectrum front end, the alignment of the synthetic aperture compression stage and the initial demonstration of the 1.15 PW @ 850 J operations in the compression stage are detailed. Issues encountered relating to damage to optics are also addressed.
A multi-Petawatt high-energy laser PETAL coupled to the Ligne d'Intégration Laser (LIL) is under construction in the Aquitaine Region in France. This Petawatt laser will be dedicated to academic experiments in the fields of high energy density physics and ultra high intensity. Nd : glass laser chain coupled with the chirped pulse amplification (CPA technique allows delivery of high energy. Optical parametric CPA for pre-amplification and a new compression scheme will be implemented. PETAL is designed to deliver 3.6 kJ of energy in 500 fs on a target corresponding to 7.2 PW. The PETAL beam linked to the up to 60 kJ ns UV beams from the LIL will present new scientific research opportunities.
Abstract. The status of the PETAL project is presented in this paper. The global architecture and performances of this facility are detailed with the first experimental results obtained on the LIL facility, and with the main steps which will allow shooting in the center of the target chamber. Some technical issues like wavefront correction, damage threshold in femtosecond regime and focusing are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.