InGaN-based monolithic multi-color light emitting diodes (LEDs) are studied both experimentally and theoretically with the focus on factors controlling their emission spectra and efficiency. A number of LEDs with different designs of spacers separating active regions providing blue and green light emission is examined. Unexpected behavior of the multi-color LED efficiency is explained in terms of a simple balance model, assuming some degradation of materials quality of the green active region grown on top of the blue one. Electrical properties of spacers separating different active regions in the multi-color LED structures are identified as the major factor controlling the contributions of these active regions to the total emission spectrum. Correlations between the type and level of the spacer doping and the emission spectrum are found by simulations. Alternative ways of the spectral control by using polarization doping in the graded-composition InGaN and AlGaN alloys used as the spacers are suggested. Color characteristics of blue/green dual-wavelength LEDs are also measured and discussed, regarding their possible applications.
The impact of electromechanical coupling on optical properties of light-emitting diodes (LEDs) with InGaN/GaN quantum-dot (QD) active regions is studied by numerical simulations. The structure, i.e. the shape and the average In content of the QDs, has been directly derived from experimental data on out-of-plane strain distribution obtained from the geometric-phase analysis of a high-resolution transmission electron microscopy image of an LED structure grown by metalorganic vapor-phase epitaxy. Using continuum [Formula: see text] calculations, we have studied first the lateral and full electromechanical coupling between the QDs in the active region and its impact on the emission spectrum of a single QD located in the center of the region. Our simulations demonstrate the spectrum to be weakly affected by the coupling despite the strong common strain field induced in the QD active region. Then we analyzed the effect of vertical coupling between vertically stacked QDs as a function of the interdot distance. We have found that QCSE gives rise to a blue-shift of the overall emission spectrum when the interdot distance becomes small enough. Finally, we compared the theoretical spectrum obtained from simulation of the entire active region with an experimental electroluminescence (EL) spectrum. While the theoretical peak emission wavelength of the selected central QD corresponded well to that of the EL spectrum, the width of the latter one was determined by the scatter in the structures of various QDs located in the active region. Good agreement between the simulations and experiment achieved as a whole validates our model based on realistic structure of the QD active region and demonstrates advantages of the applied approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.