On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems will modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrain the characteristic amplitude of this background, A c,yr , to be < 1.0×10-15 with 95% confidence. This limit excludes predicted ranges for A c,yr from current models with 91-99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments, and that higher-cadence and shorter-wavelength observations would result in an increased sensitivity to gravitational waves.Studies of the dynamics of stars and gas in nearby galaxies provide strong evidence for the ubiquity of supermassive (> 10 6 solar mass) black holes (SMBHs) (1). Observations of luminous quasars indicate that SMBHs are hosted by galaxies throughout the history of the universe (2) and affect global properties of the host galaxies (3). The prevailing dark energycold dark matter cosmological paradigm predicts that large galaxies are assembled through the hierarchical merging of smaller galaxies. The remnants of mergers can host gravitationally bound binary SMBHs with orbits decaying through the emission of gravitational waves (GWs) (4).Gravitational waves from binary SMBHs, with periods between ~ 0.1 and 30 yr (5), can be detected or constrained by monitoring, for years to decades, a set of rapidly rotating millisecond pulsars (MSPs) distributed throughout our galaxy. Radio emission beams from MSPs are observed as pulses that can be time-tagged with as small as 20 ns precision (6). When traveling across the pulsar-Earth line of sight, GWs induce variations in the arrival times of the pulses (7).The superposition of GWs from the binary SMBH population is a stochastic background (GWB), which is typically characterized by the strain-amplitude spectrum h c (f)=A c,yr [f/(1 yr -1 )] -2/3 , where f is the GW frequency, A c,yr is the characteristic amplitude of the GWB measured at f = 1 yr -1 , predicted to be A c,yr > 10 -15 (5,(8)(9)(10)(11)(12), and -2/3 is the predicted spectral index (5,(8)(9)(10)(11)(12). The GWB will add low-frequency perturbations to pulse arrival times. While the detection of the GWB would confirm the presence of a cosmological population of binary SMBHs, limits on its amplitude constrain models of galaxy and SMBH evolution (8).As part of the Parkes Pulsar Timing Array project to detect GWs (6), we have been monitoring 24 pulsars with the 64-m Parkes radio telescope. We have produced a new data set, using observations taken at a central wavelength of 10 cm and previously reported methods (6,8), that spans 11 yr, which is 3 yr longer than previous data sets analyzed at this wavelength. In addition to having greater sensitivity to the GWB because of the longer duration, the data set was improved by identifying and correc...
We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar dataset spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar System ephemeris errors, obtaining a robust 95% upper limit on the dimensionless strain amplitude A of the background of A < 3.0 × 10 −15 at a reference frequency of 1yr −1 and a spectral index of 13/3, corresponding to a background from inspiralling super-massive black hole binaries, constraining the GW energy density to Ω gw ( f )h 2 < 1.1 × 10 −9 at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of ∼ 5×10 −9 Hz. Finally we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95% upper limits on the string tension, Gµ/c 2 , characterising a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit Gµ/c 2 < 1.3 × 10 −7 , identical to that set by the Planck Collaboration, when combining Planck and high-Cosmic Microwave Background data from other experiments. For a stochastic relic background we set a limit of Ω relic gw ( f )h 2 < 1.2 × 10 −9 , a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array. c 0000 RAS arXiv:1504.03692v3 [astro-ph.CO] 9 Sep 2015
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.