Article (Published Version) http://sro.sussex.ac.uk Alterev, I, Harris, Philip, Shiers, David and et al, (2009) Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields. Physical Review D, 80 (3). 032003. ISSN 1550-7998 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/16039/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.
Copyright and reuse:Sussex Research Online is a digital repository of the research output of the University.Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields We performed ultracold neutron storage measurements to search for additional losses due to neutron (n) to mirror-neutron (n 0 ) oscillations as a function of an applied magnetic field B. In the presence of a mirror magnetic field B 0 , ultracold neutron losses would be maximal for B % B 0 . We did not observe any indication for nn 0 oscillations and placed a lower limit on the oscillation time of nn 0 > 12:0sat 95% C.L. for any B 0 between 0 and 12:5 T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.