We report on calorimetry under applied hydrostatic pressure and magnetic field at the antiferromagnetic (AFM)-ferromagnetic (FM) transition of Fe 49 Rh 51 . Results demonstrate the existence of a giant barocaloric effect in this alloy, a new functional property that adds to the magnetocaloric and elastocaloric effects previously reported for this alloy. All caloric effects originate from the AFM/FM transition which encompasses changes in volume, magnetization and entropy.The strong sensitivity of the transition temperatures to both hydrostatic pressure and magnetic field confers to this alloy outstanding values for the barocaloric and magnetocaloric strengths (|∆S|/∆p ∼ 12 J kg −1 K −1 kbar −1 and |∆S|/µ 0 ∆H ∼ 12 J kg −1 K −1 T −1 ). Both barocaloric and magnetocaloric effects have been found to be reproducible upon pressure and magnetic field cycling. Such a good reproducibility and the large caloric strengths make Fe-Rh alloys particularly appealing for solid-state cooling technologies at weak external stimuli.
We report on the barocaloric and magnetocaloric effects in a series of low-hysteresis Ni-Mn-In magnetic shape memory alloys. We show that the behaviour exhibited by several quantities that characterise these caloric effects (isothermal entropy change, adiabatic temperature change and refrigerant capacity) can be rationalised in terms of the relative distance between the Curie point of the austenite and the martensitic transition temperature. It is found that the two caloric effects exhibit opposite trends. The behaviour of the barocaloric effect parallels that exhibited by the transition entropy change, thereby showing larger values for weakly magnetic samples. Regarding the magnetocaloric effect, the entropy change is maximum for those samples transforming martensitically close to the Curie point of the austenite. Such a maximum value does not correspond to the maximum adiabatic temperature change, and samples with martensitic transition slightly below the Curie point do have larger temperature changes as a result of the strongest sensitivity of the transition to the magnetic field.
We report on the adiabatic temperature changes (ΔT) associated with the magnetocaloric and barocaloric effects in a Fe49Rh51 alloy. For the magnetocaloric effect, data derived from entropy curves are compared to direct thermometry measurements. The agreement between the two sets of data provides support to the estimation of ΔT for the barocaloric effect, which are indirectly determined from entropy curves. Large ΔT values are obtained at relatively low values of magnetic field (2 T) and hydrostatic pressure (2.5 kbar). It is also shown that both magnetocaloric and barocaloric effects exhibit good reproducibility upon magnetic field and hydrostatic pressure cycling, over a considerable temperature range.
We report on the multicaloric response of the Fe 49 Rh 51 alloy under the combined application of hydrostatic pressure and magnetic field. Experimental data are complemented by a mean field model that takes into account the interplay between structural and magnetic degrees of freedom. A large multicaloric strength has been found for this alloy, and it is shown that a suitable combination of pressure and magnetic field enables the sign of the entropy change to be reversed and thus the multicaloric effect can be tuned from conventional to inverse. It is also shown that an extended temperature window for the multicaloric effect can be achieved by taking advantage of the coupling between structure and magnetism which enables a cross response of the alloy under the application of different external fields. Mean field calculations remarkably reproduce experimental results.
We have studied magnetocaloric properties of a Ni-Mn-In metamagnetic shape-memory alloy especially designed in order to display low thermal hysteresis. Magnetization and calorimetric measurements under a magnetic field have been used in order to determine isothermal magnetic field-induced entropy changes. Results obtained indirectly from magnetization data, quasi-directly from isofield calorimetric measurements, and directly from isothermal calorimetric runs are systematic and agree well with each other. We have analyzed the reproducibility of magnetocaloric properties with cycling from direct isothermal calorimetric measurements. Due to low thermal hysteresis, we have found that about 80% of the transition entropy change, ΔSt ≃ 25 J/kg K, can be reversibly induced under successive application and removal of a field of 6 T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.