3-(Alkylamino)-7-halo-4H-1,2,4-benzothiadiazine 1,1-dioxides were synthesized, and their activity on rat-insulin-secreting cells and rat aorta rings was compared to that of the K(ATP) channel activators diazoxide and pinacidil. Structure-activity relationships indicated that an improved potency and selectivity for the pancreatic tissue was obtained by introducing a fluorine atom in the 7-position and a short linear (preferably ethyl) or cyclic (preferably cyclobutyl) hydrocarbon chain on the nitrogen atom in the 3-position. By contrast, strong myorelaxant activity was gained by the introduction of a halogen atom different from the fluorine atom in the 7-position and a bulky branched alkylamino chain in the 3-position. Thus, 3-(ethylamino)-7-fluoro-4H-1,2,4-benzothiadiazine 1,1-dioxide (11) expressed a marked inhibitory activity on pancreatic B-cells (IC(50) = 1 microM) associated with a weak vasorelaxant effect (ED(50) > 300 microM), whereas 7-chloro-3-(1,1-dimethylpropyl)amino-4H-1,2,4-benzothiadiazine 1,1-dioxide (27), which was only slightly active on insulin-secreting cells (IC(50) > 10 microM), was found to be very potent on vascular smooth muscle cells (ED(50) = 0.29 microM). Radioisotopic and electrophysiological investigations performed with 7-chlorinated, 7-iodinated, and 7-fluorinated 3-alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides confirmed that the drugs activated K(ATP) channels. The present data revealed that subtle structural modifications of 3-(alkylamino)-7-halo-4H-1,2,4-benzothiadiazine 1,1-dioxides can generate original compounds activating K(ATP) channels and exhibiting different in vitro tissue selectivity profiles.
A series of 6,7-disubstituted 4H-1,2,4-benzothiadiazine 1,1-dioxides bearing a short alkylamino side chain in the 3-position were synthesized. These compounds were tested on rat pancreatic islets and on rat aorta rings. In vitro data indicated that in most cases substitution in the 6 and the 7 positions increased their activity as inhibitors of insulin secretion, while the myorelaxant potency of the drugs was maintained or enhanced according to the nature of the substituent in the 7-position. The presence of either chlorine or bromine atoms in the 6 and 7 positions did not improve the apparent selectivity of the drugs for the pancreatic tissue. By contrast, the introduction of one or two fluorine atoms, as well as the presence of a methoxy group in the 7-position, generated potent and selective inhibitors of insulin release. Radioisotopic and fluorimetric experiments performed with the most potent compound inhibiting insulin release (34, BPDZ 259, 6-chloro-7-fluoro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide) confirmed that the drug activated K(ATP) channels. 34 was found to be one of the most potent and selective pancreatic potassium channel openers yet described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.