In recent times, research has shifted away from conventional materials and alloys and more towards nanocomposites to create lighter, more efficient materials for specific applications. The major goal of this research is to see how successful adding aluminium tetrahydride (ATH) filler to a luffa fibre/polyester-based hybrid composite is. The compression moulding process was used to create the nanocomposite. The following limitations were used to achieve the goals mentioned above: (i) weight percent of ATH, (ii) weight percent of luffa fibres, and (iii) cryogenic treatment hours. The mechanical properties of the materials, such as flexural, tensile, and impact, were examined. The scanning electron microscope observed the morphology pictures, revealing flaws such as interface behaviour, fibre pullouts, voids, and interior cracks. As a result, the current study found that adding nanofiller to a natural fibre composite can improve its mechanical properties, because it established a strong link between the matrix and its reinforcements, which would aid in the effective transmission of stress in the hybrid system. It also improved moisture resistance, which might be useful in construction and commercial industries. The composite with 1 wt.% of ATH, 24 wt.% of luffa fibres, and 30 minutes of cryogenic treatment showed better mechanical strength. Cryogenic treatment reduces compressive interface stresses, which helps maintain fibre and matrix in contact and improve adhesion, resulting in superior results. TGA analysis was used to confirm it.
The objective of the present experimental work is to obtain an appropriate welding parameter on pulsed current gas tungsten arc welding (GTAW) ferritic stainless steel AISI 409L with a thickness of 4.5 mm. Frequency affected penetration, and the ratio of bead width to penetration (aspect ratio) is the main objective of the research. A Taguchi L9 orthogonal array with three level four factors was chosen to execute the bead on plate welding. It leads to optimize the input process parameters on main effect plot via analysis of variance, and it has imposed to determine their contribution level of each parameter with respect to responses. Taguchi optimized conditions for butts weld with the pulsed TIG and its surface morphology, and mechanical characteristics of AISI 409L weld was investigated. A full penetration with an optimal aspect ratio was accomplished using high-frequency pulsing, according to the findings. The mechanical properties were characterized using Vickers microhardness and tensile tests on the base material and weld metals. Microstructural study revealed that these variables have a greater impact on the bead profile. Pulsed TIG showed maximum UTS of 445 MPa and a minimum of 385 MPa, with an average of three samples of 415 MPa. The weld metal in all of the zones had influenced superior tensile strength (UTS) as compared to base metal, according to the findings. The obtained strain percentage for both butt and TIG welds, however, was smaller than that of the parent metal. The formation of martensitic was attributed for the higher tensile strength with minimized ductility of the pulsed TIG welds. Furthermore, results on the hardness are in concurrence with the tensile experiments, as the zone for fusion has a higher hardness than the base metal. Corrosion behavior of the parent metal and welded specimen was analyzed using a potentio-dynamic polarization technique. The electrochemical behavior of base material and weld samples confirmed that the overall corrosion resistance is better in parent material than the other zones.
Pyrolysis is the most important thermochemical process that can be used for the production of biofuel, from wood and wood-based lignocellulosic materials. In this study, bio-oil is produced from the bio-weed named Ficus religiosa by the thermal pyrolysis process by utilizing laboratory-scale fluidized bed reactor. This study deals with the production of maximum bio-oil by optimizing process parameters such as process temperature, particle size, and sweep gas flow rate. Further different analytical techniques were used to describe the properties of bio-oil for different applications. Wood and wood barks of Ficus religiosa were chosen as the raw material due to their higher volatile content (72.4%). The maximum yield of 47.5 wt% bio-oil was collected at the optimized operating conditions of 450°C temperature, 1.0 mm particle size, and 2.0 m3/h sweep gas flow rate. Compared with other operating parameters, temperature is observed as the most significant one to determine the product yield. Through chromatographic analysis, it was identified that the bio-oil is found with the variety of chemical compounds including alcohols, alkenes, phenols, saturated fatty acids, and esters.
The main focus of this research is to enhance the use of eco-friendly materials these days. The current materials used in building construction are chemical-based and are harmful to humans and the environment. This research work has developed a new type of hybrid brick by using natural fibres and waste materials. This research focuses on fabricating novel bricks reinforced with different percentages of coconut waste fibre, wheat straw fibre, waste wood animal dung ash, gypsum, sand, and cement. The fabricated novel brick’s physical, mechanical, chemical, acoustic, and heat-absorbing properties were evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.