Two data points in the shaded zones of Figs. 3(a) and 3(b) (one point for each figure), were omitted in the published version of these figures. The correct Fig. 3 is shown below.FIG. 3. Radial profiles of (a) electron density, ( b) electron temperature, and (c) ion temperature at 6 s and (d) safety factor at 5.9 s of the discharge shown in Fig. 2. The volume-averaged plasma minor radius is 1.01 m.
Instabilities with frequency chirping in the frequency range of Alfvén eigenmodes have been found in the domain 0.1% < β h < 1% and v b /vA ∼ 1 with high energy neutral beam injection in JT-60U. One instability with a frequency inside the Alfvén continuum spectrum appears and its frequency increases slowly to the toroidicity induced Alfvén eigenmode (TAE) gap on the timescale of an equilibrium change (≈200 ms). Other instabilities appear with a frequency inside the TAE gap and their frequencies change very quickly by 10-20 kHz in 1-5 ms. During the period when these fast frequency sweeping (fast FS) modes occur, abrupt large amplitude events (ALEs) often appear with a drop of neutron emission rate and an increase in fast neutral particle fluxes. The loss of energetic ions increases with a peak fluctuation amplitude of Bθ /B θ . An energy dependence of the loss ions is observed and suggests a resonant interaction between energetic ions and the mode.
The operation of JT-60U reversed shear discharges has been extended to a high plasma current, low q regime keeping a large radius of the internal transport barrier (ITB), and a record value of equivalent fusion multiplication factor in JT-60U, QDTeq = 1.25, has been achieved at 2.6 MA. Operational schemes to reach the low q regime with good reproducibility have been developed. The reduction of Zeff was obtained in the newly installed W shaped pumped divertor. The β limit in the low qmin regime, which limited the performance of L mode edge discharges, has been improved in H mode edge discharges with a broader pressure profile, which was obtained by power flow control with ITB degradation. Sustainment of the ITB and improved confinement for 5.5 s has been demonstrated in an ELMy H mode reversed shear discharge.
The article treats the recent development of quasi-steady ELMy high βp H mode discharges with enhanced confinement and high β stability, where long sustainment time, an increase in absolute fusion performance and extension of the discharge regime towards low q95 (∼3) are emphasized. After modification to the new W shaped pumped divertor, a long heating time (9 s) with a high total heating energy input of 203 MJ became possible without a harmful increase in impurity and particle recycling. In addition, optimization of the pressure profile characterized by the double transport barriers, optimum electron density and/or high triangularity δ made it possible to extend the performance in long pulses. The DT equivalent fusion gain Q eq DT ≈ 0.1 (δ = 0.16) was sustained for ∼9 s (∼50τE, ∼10τ * p ) and Q eq DT ≈ 0.16 (δ = 0.3) for 4.5 s at Ip = 1.5 MA. In the latter case with higher δ, an H factor (=τE/τ ITER89PL E ) of ∼2.2, βN ≈ 1.9 and βp ≈ 1.6 were sustained with 60-70% of the non-inductively driven current. In the low q95 (∼3) region, the β limit was improved by the high δ (∼0.46) shape, where βN ≈ 2.5-2.7 was sustained for ∼3.5 s with the collisionality close to that of ITER-FDR plasmas. The limit of the edge α parameter in the ELMy phase increases with δ, which is the main reason behind the improved β limit in a long pulse at high δ. The sustainable value of βN H also increases with δ. Sustainable βN is limited by the onset of low n resistive modes. Direct measurement of island width shows agreement with the neoclassical tearing mode theory.
The operation of reversed shear plasmas in JT-60U has been extended to the low-q, high-Ip region keeping a large radius transport barrier, and a high fusion performance has been achieved. Record values of deuterium-tritium (DT)-equivalent power gain in JT-60U have been obtained: QDTeq = 1.05, τE = 0.97 s, nD(0) = 4.9 × 1019 m-3 and Ti(0) = 16.5 keV. A large improvement in confinement resulted from the formation of an internal transport barrier (ITB) with a large radius, which was characterized by steep gradients in electron density, electron temperature and ion temperature just inside the position of qmin. Large negative shear regions, up to 80% of the plasma minor radius in the low-qmin regime (qmin∼2), were obtained by plasma current ramp-up after the formation of the ITB with the pressure and current profiles being controlled by adjustment of plasma volume and beam power. The ITB was established by on-axis beam heating into a low density target plasma with reversed shear that was formed by current ramp-up without beam heating. The confinement time increased with the radius of the ITB and the decrease of qmin at a fixed toroidal field. High H factors, up to 3.3, were achieved with an L mode edge. The effective one fluid thermal diffusivity χeff had its minimum in the ITB. The values of H/q95 and βt increased with the decrease of q95, and the highest performance was achieved at q95 ∼3.1 (2.8 MA). The performance was limited by disruptive beta collapses with βN∼2 at qmin∼2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.