Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now be made in the mHz to kHz frequency range. This increased accuracy in the kHz range will allow a more accurate field characterization of the complex electrical conductivity of soils and sediments, which may lead to the improved estimation of saturated hydraulic conductivity from electrical properties. Although the correction methods have been developed for a custom-made EIT system, they also have potential to improve the phase accuracy of EIT measurements made with commercial systems relying on multicore cables.
A high-accuracy impedance spectrometer E Zimmermann, A Kemna, J Berwix et al.-EIT measurement system with high phase accuracy for the imaging of spectral induced polarization properties of soils and sediments E Zimmermann, A Kemna, J Berwix et al.
Electrical impedance tomography (EIT) is a promising method to characterize important hydrological properties of soil, sediments, and rocks. The characterization is based on the analysis of the phase response of the complex electrical conductivity in a broad frequency range (i.e. mHz to kHz). However, it is challenging to measure the small phase response of low-polarizable soils and rocks in the higher frequency range up to 10 kHz. In order to achieve the required phase accuracy in the kHz frequency range, an optimized measurement system and advanced model-based processing methods have been developed. Recently, EIT measurements at sites with low electrical conductivity have shown a new dominating phase error related to capacitive leakage currents between cable shields and soil. In order to correct this phase error, we developed an advanced finite element model that considers both leakage currents and capacitive coupling between the soil and the cable shields in the reconstruction of the complex electrical conductivity distribution. This advanced model also takes into account potential measurement errors due to high electrode impedances. The use of this advanced model reduced the new dominating error for media with low electrical conductivity. It was also found that the amount of leakage current is an additional indicator for data quality that can be used for data filtering. After application of a novel data filter based on the leakage current and the use of the advanced modelling approach, the phase error of the measured transfer impedances above 100 Hz was significantly reduced by a factor of 6 or more at 10 kHz. In addition, physically implausible positive phase values were effectively eliminated. The new correction method now enables the reconstruction of the complex electrical conductivity for frequencies up to 10 kHz at field sites with a low electrical conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.