An ultra-stable dual-wavelength saturable absorber based on a cladding-embedded commercial graphene oxide (GO) solution by capillary action in a solid core photonic crystal fiber (PCF) is demonstrated for the first time. The saturation absorption property is achieved through evanescent coupling between the guided light and the cladding-filled graphene layers. Stable spacing dual-wavelength fiber lasing is attained by controlling the polarization state of a simple 0.9 m long ring of highly doped Leikki Er80-8/125 erbium-doped fiber as the primary gain medium with PCF, polarization controller and tunable bandpass filter. Embedded GO is used to generate the desired pulsed output, and the laser is capable of generating pulses having a repetition rate of 24 kHz with an average output power and pulse energy of 0.167 mW and 8.98 nJ, respectively, at the maximum pump power of 220 mW.
The dual-wavelength fiber laser provides a compact, robust and stable platform for the generation of microwave signals. Two approaches towards generating microwave emissions using dual wavelengths are explored in this work, with both exploiting the heterodyning beat technique. Both approaches are based on a ring fiber laser with an erbium-doped fiber, having absorption coefficients of 16.0-20.0 dBm at 1531 nm and 11.0-13.0 dBm at 980 nm, serving as the active gain medium. A 10 cm long photonic crystal fiber with a solid core diameter of 4.37 μm and surrounded by air holes of 5.06 μm diameter with a separation of 5.52 μm between them serves to create the desired dual-wavelength output. A tunable band pass filter with bandwidth of 0.8 nm serves as a tuning mechanism together with a polarization controller. Channel spacings as narrow as 0.00043 nm can be realized, giving a microwave output of about 671.9 MHz. Furthermore, the channel spacing can be extended to as large as 0.03631 nm, giving a microwave emission in excess of 4.59 GHz. The output is highly stable, with little change in power or wavelength observed over a test period of 22 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.