We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in nine filters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Å to the z band (∼ 9160 Å). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He II λ1640 and λ4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with τ ∝ λ 4/3 . However, the lags also imply a disk radius that is 3 times larger than the prediction from standard thin-disk theory, assuming that the bolometric luminosity is 10% of the Eddington luminosity (L = 0.1L Edd ). Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lags due to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination (∼ 20%) can be important for the shortest continuum lags, and likely has a significant impact on the u and U bands owing to Balmer continuum emission.
Recent intensive Swift monitoring of the Seyfert 1 galaxy NGC 5548 yielded 282 usable epochs over 125 days across six UV/optical bands and the X-rays. This is the densest extended AGN UV/optical continuum sampling ever obtained, with a mean sampling rate <0.5-day. Approximately daily HST UV sampling was also obtained. The UV/optical light curves show strong correlations (r max = 0.57 − 0.90) and the clearest measurement to date of interband lags. These lags are well-fit by a τ ∝ λ 4/3 wavelength dependence, with a normalization that indicates an unexpectedly large disk radius of ∼ 0.35 ± 0.05 lt-day at 1367Å, assuming a simple face-on model. The U-band shows a marginally larger lag than expected from the fit and surrounding bands, which could be due to Balmer continuum emission from the broad-line region as suggested by Korista and Goad. The UV/X-ray correlation is weaker (r max < 0.45) and less consistent over time. This indicates that while Swift is beginning to measure UV/optical lags in general agreement with accretion disk theory (although the derived size is larger than predicted), the relationship with X-ray variability is less well understood. Combining this accretion disk size estimate with those from quasar microlensing studies suggests that AGN disk sizes scale approximately linearly with central black hole mass over a wide range of masses.
We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100Å optical continuum by , respectively. The Hβ lag relative to the 1158Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ∼50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ∼50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broadline region dominated by Keplerian motion. The responses of both the Hβ and He II emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C IV, Lyα, He II (+O III]), and Si IV(+O IV]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR -L AGN relation based on the past behavior of NGC 5548.
We describe the first results from a six-month long reverberation-mapping experiment in the ultraviolet based on 171 observations of the Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Significant correlated variability is found in the continuum and broad emission lines, with amplitudes ranging from ∼30% to a factor of two in the emission lines and a factor of three in the continuum. The variations of all the strong emission lines lag behind those of the continuum, with He II λ1640 lagging behind the continuum by ∼2.5 days and Lyα λ1215, C IV λ1550, and Si IV λ1400 lagging by ∼5-6 days. The relationship between the continuum and emission lines is complex. In particular, during the second half of the campaign, all emission-line lags increased by a factor of 1.3-2 and differences appear in the detailed structure of the continuum and emissionline light curves. Velocity-resolved cross-correlation analysis shows coherent structure in lag versus line of sight velocity for the emission lines; the high-velocity wings of C IV respond to continuum variations more rapidly than the line core, probably indicating higher velocity broad-line region clouds at smaller distances from the central
We conduct a multiwavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Å to 9157 Å) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination = i 36 10 , temperature = T 44 6 10 1 3 ( ) K at 1 light day from the black hole, and a temperature-radius slope ( µ a -T r ) of a = 0.99 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at = L L 0.1 Edd .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.