Aflatoxin contamination in human food and animal feed is a threat to public safety. Aflatoxin B1 (AFB1) can be especially damaging to poultry production and consequently economic development of Pakistan. The present study assessed the in vitro binding of AFB1 by indigenously characterized probiotic lactobacilli. Six isolates (Lactobacillus gallinarum PDP 10, Lactobacillus reuetri FYP 38, Lactobacillus fermentum PDP 24, Lactobacillus gallinarum PL 53, Lactobacillus paracasei PL 120, and Lactobacillus gallinarum PL 149) were tested for activity against toxigenic Aspergillus flavus W-7.1 (AFB1 producer) by well diffusion assay. Only three isolates (PL 53, PL 120, and PL 149) had activity against A. flavus W-7.1. The ameliorative effect of these probiotic isolates on AFB1 production was determined by co-culturing fungus with lactobacilli for 12 days, followed by aflatoxin quantification by high-performance liquid chromatography. In vitro AFB1 binding capacities of lactobacilli were determined by their incubation with a standard amount of AFB1 in phosphate buffer saline at 37 °C for 2 h. AFB1 binding capacities of isolates ranged from 28–65%. Four isolates (PDP 10, PDP 24, PL 120, and PL 149) also ceased aflatoxin production completely, whereas PL 53 showed 55% reduction in AFB1 production as compared to control. The present study demonstrated Lactobacillus gallinarum PL 149 to be an effective candidate AFB1 binding agent against Aspergillus flavus. These findings further support the binding ability of lactic acid bacteria for dietary contaminants.
In the present study, sterilized rice bran was fermented for 48, 72 and 96 hours by Aspergillus flavus and proximate analysis indicated that fermentation changed nutritive value of the rice bran. Four experimental feeds were fed to 4 groups of day old broiler chicks for 6 weeks to evaluate their effects on broiler performance (weekly feed intake, weight gain, FCR and mortality). During first 2 weeks, birds of group D showed significant difference (P less than 0.05) in feed intake and weight gain as compared to groups A (control), B and C. All groups did not show significant differences in feed conversion ratios (FCR). During 3rd week of trial, chickens of Group D showed significant difference (P less than 0.05) in feed intake, weight gain and FCR as compared to group A. During last 3 weeks, birds in group D showed significant difference (P less than 0.05) in feed intake, weight gain and FCR as compared to birds of groups A, B and C. Group D showed significantly higher weight gain and better FCR (P less than 0.05) as compared to groups A, B and C. On the whole, broiler chickens fed on 96 hours fermented rice bran showed best growth performance. In-vivo phytase activity was determined in ash of tibia bones collected from selected birds in each group. Group D showed significantly high percentage (P less than 0.05) of ash and phosphorus in tibia bones as compared to groups A (control), B and C. In conclusion, fermented rice bran showed beneficial effect on broiler performance and could be used in poultry feed as phytase source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.