Maternal uniparental disomy 14 [upd(14)mat] is associated with a recognizable phenotype that includes pre- and postnatal growth retardation, neonatal hypotonia, feeding problems and precocious puberty. Chromosome 14 contains an imprinted gene cluster, which is regulated by a differentially methylated region (IG-DMR) between DLK1 and GTL2. Here we report on four patients with clinical features of upd(14)mat who show a maternal-only methylation pattern, but biparental inheritance for chromosome 14. In three of the patients loss of paternal methylation appears to be a primary epimutation, whereas the other patient has a paternally derived deletion of -1 Mb that includes the imprinted DLK1-GTL2 gene cluster. These findings demonstrate that the upd(14)mat phenotype is caused by altered expression of genes within this cluster.
The chromosomal region 14q32 contains several imprinted genes, which are expressed either from the paternal (DLK1 and RTL1) or the maternal (MEG3, RTL1as and MEG8) allele only. Imprinted expression of these genes is regulated by two differentially methylated regions (DMRs), the germline DLK1/MEG3 intergenic (IG)-DMR (MEG3/DLK1:IG-DMR) and the somatic MEG3-DMR (MEG3:TSS-DMR), which are methylated on the paternal and unmethylated on the maternal allele. Disruption of imprinting in the 14q32 region results in two clinically distinct imprinting disorders, Temple syndrome (TS14) and Kagami-Ogata syndrome (KOS14). Another DMR with a yet unknown function is located in intron 2 of MEG8 (MEG8-DMR, MEG8:Int2-DMR). In contrast to the IG-DMR and the MEG3-DMR, this somatic DMR is methylated on the maternal chromosome and unmethylated on the paternal chromosome. We have performed extensive methylation analyses by deep bisulfite sequencing of the IG-DMR, MEG3-DMR and MEG8-DMR in different prenatal tissues including amniotic fluid cells and chorionic villi. In addition, we have studied the methylation pattern of the MEG8-DMR in different postnatal tissues. We show that the MEG8-DMR is hypermethylated in each of 13 non-deletion TS14 patients (seven newly identified and six previously published patients), irrespective of the underlying molecular cause, and is always hypomethylated in the four patients with KOS14, who have different deletions not encompassing the MEG8-DMR itself. The size and the extent of the deletions and the resulting methylation pattern suggest that transcription starting from the MEG3 promoter may be necessary to establish the methylation imprint at the MEG8-DMR.
The difficulties in defining the borders of the schizophrenia spectrum is one major source of variance in linkage studies of schizophrenia. The employment of biological markers may prove advantageous. Due to empirical evidence, eye tracking dysfunction (ETD) has been discussed to be the most promising marker for genetic liability to schizophrenia. With respect to the recent progress in genomic scans, which have pointed to the short arm of chromosome 6, we carried out a scan of the 6p21-23 region with 16 microsatellite markers to test for linkage between chromosomal markers and ETD as well as schizophrenia. We tested 5 models of inheritance of ETD and found maximum two-point lod scores of 3.51 for D6S271 and 3.44 for D6S282. By including these markers in a multipoint analysis, a lod score of 4.02 was obtained. In the case of schizophrenia, 7 models were tested; however, with non-significant results. Our findings, together with another recent linkage report, point to the possibility of a second susceptibility locus for schizophrenia which may be located centromeric to the HLA region. Also, the evidence of ETD being a susceptibility marker for schizophrenia receives further support.
Premutations in the FMR1 gene may be associated with some cases of parkinsonism. To test this hypothesis, we determined the CGG repeat number in FMR1 in 673 individuals with and without parkinsonism and detected 3 premutation carriers (2 patients, 1 control). Of note, 1 of the affected premutation carriers had a heterozygous Parkin mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.