Only a small percentage of insect species are pests. However, pest species cause significant losses in agricultural and forest crops, and many are vectors of diseases. Currently, many scientists are focused on developing new tools to control insect populations, including secondary plant metabolites, e.g., alkaloids, glycoalkaloids, terpenoids, organic acids and alcohols, which show promise for use in plant protection. These compounds can affect insects at all levels of biological organization, but their action generally disturbs cellular and physiological processes, e.g., by altering redox balance, hormonal regulation, neuronal signalization or reproduction in exposed individuals. Secondary plant metabolites cause toxic effects that can be observed at both lethal and sublethal levels, but the most important effect is repellence. Plants from the Solanaceae family, which contains numerous economically and ecologically important species, produce various substances that affect insects belonging to most orders, particularly herbivorous insects and other pests. Many compounds possess insecticidal properties, but they are also classified as molluscides, acaricides, nematocides, fungicides and bactericides. In this paper, we present data on the sublethal and lethal toxicity caused by pure metabolites and crude extracts obtained from Solanaceae plants. Pure substances as well as water and/or alcohol extracts cause lethal and sublethal effects in insects, which is important from the economical point of view. We discuss the results of our study and their relevance to plant protection and management.
The growing incidence of microorganisms that resist antimicrobials is a constant concern for the scientific community, while the development of new antimicrobials from new chemical entities has become more and more expensive, time-consuming, and exacerbated by emerging drug-resistant strains. In this regard, many scientists are conducting research on plants aiming to discover possible antimicrobial compounds. The secondary metabolites contained in plants are a source of chemical entities having pharmacological activities and intended to be used for the treatment of different diseases. These chemical entities have the potential to be used as an effective antioxidant, antimutagenic, anticarcinogenic and antimicrobial agents. Among these pharmacologically active entities are the alkaloids which are classified into a number of classes, including pyrrolizidines, pyrrolidines, quinolizidines, indoles, tropanes, piperidines, purines, imidazoles, and isoquinolines. Alkaloids that have antioxidant properties are capable of preventing a variety of degenerative diseases through capturing free radicals, or through binding to catalysts involved indifferent oxidation processes occurring within the human body. Furthermore, these entities are capable of inhibiting the activity of bacteria, fungi, protozoan and etc. The unique properties of these secondary metabolites are the main reason for their utilization by the pharmaceutical companies for the treatment of different diseases. Generally, these alkaloids are extracted from plants, animals and fungi. Penicillin is the most famous natural drug discovery deriving from fungus. Similarly, marines have been used as a source for thousands of bioactive marine natural products. In this review, we cover the medical use of natural alkaloids isolated from a variety of plants and utilized by humans as antibacterial, antiviral, antifungal and anticancer agents. An example for such alkaloids is berberine, an isoquinoline alkaloid, found in roots and stem-bark of Berberis asculin P. Renault plant and used to kill a variety of microorganisms.
A method for the comprehensive profiling of intact glucosinolates (GLSs), major and minor, occurring in leaves and seeds of rocket salad (Eruca sativa L.) is presented using optimized reversed-phase liquid chromatography (RP-LC) with electrospray ionization (ESI) ion trap mass spectrometry (ITMS). ESI-ITMS in the negative mode was confirmed to be very suitable to analyze these compounds in crude extracts. After extraction from the plant material with methanol/water (70:30 v/v) at 70 degrees C, the analytes of interest were separated on a C18 column using an eluent acidified with formic acid (0.1%) and modified with acetonitrile. All the GLSs found in leaves of rocket salad gave good signals corresponding to the deprotonated precursor ion, [M-H]-. Although the mass spectra also exhibited an analytically important non-covalent adduct ion at [2M-H]-, the structures of glucosinolates were confirmed by extensive sequential MS analysis, thereby substantially improving the identification of unknown compounds. The results obtained not only revealed in leaves of E. sativa at least twelve species of GLSs including seven aliphatic compounds (glucoraphanin with [M-H]- at m/z ratio of 436, glucoerucin at m/z 420, 4-mercaptobutyl-GLS at m/z 406, progoitrin/epiprogoitrin at m/z 388, sinigrin at m/z 358, 4-methylpentyl- and n-hexyl-GLS at m/z 402) and three indole glucosinolates (i.e., three N-heterocyclic compounds: 4-hydroxyglucobrassicin and 5-hydroxyglucobrassicin at m/z 463, and 4-methoxy-glucobrassicin at m/z 477), but also two structurally related compounds containing one intermolecular disulfide linkage (4-(beta-D-glucopyranosyldisulfanyl)butyl-GLS at m/z 600 and a dimeric 4-mercaptobutyl-GLS at m/z 811). This latter symmetric disulfide was previously considered as an artefact formed during extraction of GLSs from vegetative tissues. Glucosinolates were detected in the leaves with a wide range of contents (10-200 micromol/g) and a great variation in the composition. Only three GLSs were identified in seeds of rocket salad, namely glucoraphanin, glucoerucin and 4-methoxyglucobrassicin. As expected, the most abundant GLS in seeds is glucoerucin. The feasibility of the strategy was also demonstrated using a rapeseed extract of certified reference material (BCR367R). The results indicated the usefulness of this method for a rapid, sensitive and comprehensive profiling of the GLS family naturally occurring in extracts of crude plant matter.
Organic waste is a rapidly increasing problem due to the growth of the agricultural production needed to meet global food demands. Development of sustainable waste management solutions is essential. Black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae) (BSF), larvae are voracious consumers of a wide range of organic materials ranging from fruits and vegetables to animal remains, and manure. Thanks to this ability and considering the larval high protein and lipid content, BSF larvae are a useful additive in animal feeds and biodiesel production. Unfortunately, the feasibility of using the black soldier fly as a tool for waste valorization and feed production has primarily been investigated at the benchtop scale. Thus, mobilization of current practices to an industrial scale is challenging because scaling up from small laboratory studies to large industrial studies is not necessarily linear. The goal of this study was to demonstrate the ability of the BSF to recycle organic waste at an industrial scale. To accomplish this goal, three organic waste streams were used (e.g., apples, bananas, and spent grain from a brewery) to test six diet treatments (1) apple, (2) banana, (3) spent grain, (4) apple and banana, (5) apple and spent grain, and (6) banana and spent grain. Working at scale of 10,000 BSF larvae life history traits, waste valorization, protein and lipid profiles were measured for each diet treatment. Differences were recorded across all variables, except substrate conversion, for larvae fed on fruit and spent grain (alone or with fruit). Growth rate significantly differed across treatments; larvae reared on spent grain grew twice as fast as those fed apples alone, but those reared on the apple and spent grain mixture produced twice as much insect biomass. However, it should be noted that larvae resulting from the apple diet contained 50% more fat than larvae fed the fruit and spent grain mixtures. Commonly-available organic wastes were successfully used at an industrial scale to produce BSF larvae that have the potential to substitute other sources of protein and lipids in different industrial applications. Industrialization efforts are encouraged to assess these impacts when integrating diverse ingredients into larval diets as a means to more precisely predict output, such as larval development time and final larval biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.