For organisms that fly or swim, movement results from the combined effects of the moving medium - air or water - and the organism's own locomotion. For larger organisms, propulsion contributes significantly to progress but the flow usually still provides significant opposition or assistance, or produces lateral displacement ('drift'). Animals show a range of responses to flows, depending on the direction of the flow relative to their preferred direction, the speed of the flow relative to their own self-propelled speed, the incidence of flows in different directions and the proportion of the journey remaining. We here present a classification of responses based on the direction of the resulting movement relative to flow and preferred direction, which is applicable to a range of taxa and environments. The responses adopted in particular circumstances are related to the organisms' locomotory and sensory capacities and the environmental cues available. Advances in biologging technologies and particle tracking models are now providing a wealth of data, which often demonstrate a striking level of convergence in the strategies that very different animals living in very different environments employ when moving in a flow.
a b s t r a c tMost spatial marine management techniques (e.g., marine protected areas) draw stationary boundaries around often mobile marine features, animals, or resource users. While these approaches can work for relatively stationary marine resources, to be most effective marine management must be as fluid in space and time as the resources and users we aim to manage. Instead, a shift towards dynamic ocean management is suggested, defined as management that rapidly changes in space and time in response to changes in the ocean and its users through the integration of near real-time biological, oceanographic, social and/or economic data. Dynamic management can refine the temporal and spatial scale of managed areas, thereby better balancing ecological and economic objectives. Temperature dependent habitat of a hypothetical mobile marine species was simulated to show the efficiency of dynamic management, finding that 82.0 to 34.2 percent less area needed to be managed using a dynamic approach. Dynamic management further complements existing management by increasing the speed at which decisions are implemented using predefined protocols. With advances in data collection and sharing, particularly in remote sensing, animal tracking, and mobile technology, managers are poised to apply dynamic management across numerous marine sectors. Existing examples demonstrate that dynamic management can successfully allow managers to respond rapidly to changes on-the-water, however to implement dynamic ocean management widely, several gaps must be filled. These include enhancing legal instruments, incorporating ecological and socioeconomic considerations simultaneously, developing 'out-of-the-box' platforms to serve dynamic management data to users, and developing applications broadly across additional marine resource sectors.
Dynamic ocean management, or management that uses near real-time data to guide the spatial distribution of commercial activities, is an emerging approach to balance ocean resource use and conservation. Employing a wide range of data types, dynamic ocean management can be used to meet multiple objectives-for example, managing target quota, bycatch reduction, and reducing interactions with species of conservation concern. Here, we present several prominent examples of dynamic ocean management that highlight the utility, achievements, challenges, and potential of this approach. Regulatory frameworks and incentive structures, stakeholder participation, and technological applications that align with user capabilities are identified as key ingredients to support successful implementation. By addressing the variability inherent in ocean systems, dynamic ocean management represents a new approach to tackle the pressing challenges of managing a fluid and complex environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.