Background: Ambiguities and anomalies in the Activity of Daily Living (ADL) patterns indicate deviations from Wellness. The monitoring of lifestyles could facilitate remote physicians or caregivers to give insight into symptoms of the disease and provide health improvement advice to residents; Objective: This research work aims to apply lifestyle monitoring in an ambient assisted living (AAL) system by diagnosing conduct and distinguishing variation from the norm with the slightest conceivable fake alert. In pursuing this aim, the main objective is to fill the knowledge gap of two contextual observations (i.e., day and time) in the frequent behavior modeling for an individual in AAL. Each sensing category has its advantages and restrictions. Only a single type of sensing unit may not manage composite states in practice and lose the activity of daily living. To boost the efficiency of the system, we offer an exceptional sensor data fusion technique through different sensing modalities; Methods: As behaviors may also change according to other contextual observations, including seasonal, weather (or temperature), and social interaction, we propose the design of a novel activity learning model by adding behavioral observations, which we name as the Wellness indices analysis model; Results: The ground-truth data are collected from four elderly houses, including daily activities, with a sample size of three hundred days plus sensor activation. The investigation results validate the success of our method. The new feature set from sensor data fusion enhances the system accuracy to (98.17% ± 0.95) from (80.81% ± 0.68). The performance evaluation parameters of the proposed model for ADL recognition are recorded for the 14 selected activities. These parameters are Sensitivity (0.9852), Specificity (0.9988), Accuracy (0.9974), F1 score (0.9851), False Negative Rate (0.0130).
Objective: Classification of sleep-wake states using multichannel electroencephalography (EEG) data that reliably work for neonates. Methods: A deep multilayer perceptron (MLP) neural network is developed to classify sleep-wake states using multichannel bipolar EEG signals, which takes an input vector of size 108 containing the joint features of 9 channels. The network avoids any post-processing step in order to work as a full-fledged real-time application. For training and testing the model, EEG recordings of 3525 30second segments from 19 neonates (postmenstrual age of 37 ± 05 weeks) are used. Results: For sleep-wake classification, mean Cohen's kappa between the network estimate and the ground truth annotation by human experts is 0.62. The maximum mean accuracy can reach up to 83% which, to date, is the highest accuracy for sleep-wake classification.
The proposed research methodology aims to design a generally implementable framework for providing a house owner/member with the immediate notification of an ongoing theft (unauthorized access to their premises). For this purpose, a rigorous analysis of existing systems was undertaken to identify research gaps. The problems found with existing systems were that they can only identify the intruder after the theft, or cannot distinguish between human and non-human objects. Wireless Sensors Networks (WSNs) combined with the use of Internet of Things (IoT) and Cognitive Internet of Things are expanding smart home concepts and solutions, and their applications. The present research proposes a novel smart home anti-theft system that can detect an intruder, even if they have partially/fully hidden their face using clothing, leather, fiber, or plastic materials. The proposed system can also detect an intruder in the dark using a CCTV camera without night vision capability. The fundamental idea was to design a cost-effective and efficient system for an individual to be able to detect any kind of theft in real-time and provide instant notification of the theft to the house owner. The system also promises to implement home security with large video data handling in real-time. The investigation results validate the success of the proposed system. The system accuracy has been enhanced to 97.01%, 84.13, 78.19%, and 66.5%, in scenarios where a detected intruder had not hidden his/her face, hidden his/her face partially, fully, and was detected in the dark from 85%, 64.13%, 56.70%, and 44.01%.
published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
In recent times, with the advancement of digital imaging, automatic facial recognition has been intensively studied for adults, while less for neonates. Due to the miniature facial structure and facial attributes, newborn facial recognition remains a challenging area. In this paper, an automatic videobased Neonatal Face Attributes Recognition (NFAR) approach in a hierarchical framework is proposed by coalescing the intensity-based method, pose estimation, and novel dedicated neonatal Face Feature Selection (FFS) algorithm. The intensity-based method is used for face detection, followed by the facial pose estimation algorithm and FFS are dedicated to neonatal pose and face feature recognition, respectively. In this study, video-data of 19 neonates' were collected from the Children's Hospital affiliated to Fudan University, Shanghai, to evaluate the proposed NFAR approach. The results show promising performance to detect the neonatal face, pose estimation (−45 • , 45 •), and facial features (nose, mouth, and eyes) recognition. The NFAR approach exhibits a sensitivity, accuracy, and specificity of 98.7%, 98.5%, and, 95.7% respectively, for the newborn babies at the frontal (0 •) facial region. The neonatal face and its attributes recognition can be expected to detect neonate's medical abnormalities unobtrusively by examining the variation in newborn facial texture pattern. INDEX TERMS Neonatal face detection, facial feature selection (FFS), neonatal pose estimation, face neonatal attributes recognition (NFAR), video electroencephalogram (VEEG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.