Glucagon is a critical regulator of glucose homeostasis; however, mechanisms regulating glucagon action and α-cell function and number are incompletely understood. To elucidate the role of the hepatic glucagon receptor (Gcgr) in glucagon action, we generated mice with hepatocyte-specific deletion of the glucagon receptor. GcgrHep−/− mice exhibited reductions in fasting blood glucose and improvements in insulin sensitivity and glucose tolerance compared with wild-type controls, similar in magnitude to changes observed in Gcgr−/− mice. Despite preservation of islet Gcgr signaling, GcgrHep−/− mice developed hyperglucagonemia and α-cell hyperplasia. To investigate mechanisms by which signaling through the Gcgr regulates α-cell mass, wild-type islets were transplanted into Gcgr−/− or GcgrHep−/− mice. Wild-type islets beneath the renal capsule of Gcgr−/− or GcgrHep−/− mice exhibited an increased rate of α-cell proliferation and expansion of α-cell area, consistent with changes exhibited by endogenous α-cells in Gcgr−/− and GcgrHep−/− pancreata. These results suggest that a circulating factor generated after disruption of hepatic Gcgr signaling can increase α-cell proliferation independent of direct pancreatic input. Identification of novel factors regulating α-cell proliferation and mass may facilitate the generation and expansion of α-cells for transdifferentiation into β-cells and the treatment of diabetes.
OBJECTIVEClinical reports link use of the glucagon-like peptide-1 receptor (GLP-1R) agonists exenatide and liraglutide to pancreatitis. However, whether these agents act on the exocrine pancreas is poorly understood.RESEARCH DESIGN AND METHODSWe assessed whether the antidiabetic agents exendin (Ex)-4, liraglutide, the dipeptidyl peptidase-4 inhibitor sitagliptin, or the biguanide metformin were associated with changes in expression of genes associated with the development of experimental pancreatitis. The effects of Ex-4 when administered before or after the initiation of caerulein-induced experimental pancreatitis were determined. The importance of endogenous GLP-1R signaling for gene expression in the exocrine pancreas and the severity of pancreatitis was assessed in Glp1r−/− mice.RESULTSAcute administration of Ex-4 increased expression of egr-1 and c-fos in the exocrine pancreas. Administration of Ex-4 or liraglutide for 1 week increased pancreas weight and induced expression of mRNA transcripts encoding the anti-inflammatory proteins pancreatitis-associated protein (PAP) (RegIIIβ) and RegIIIα. Chronic Ex-4 treatment of high-fat–fed mice increased expression of PAP and reduced pancreatic expression of mRNA transcripts encoding for the proinflammatory monocyte chemotactic protein-1, tumor necrosis factor-α, and signal transducer and activator of transcription-3. Sitagliptin and metformin did not significantly change pancreatic gene expression profiles. Ex-4 administered before or after caerulein did not modify the severity of experimental pancreatitis, and levels of pancreatic edema and serum amylase were comparable in caerulein-treated Glp1r−/− versus Glp1r+/+ mice.CONCLUSIONSThese findings demonstrate that GLP-1 receptor activation increases pancreatic mass and selectively modulates the expression of genes associated with pancreatitis. However, activation or genetic elimination of GLP-1R signaling does not modify the severity of experimental pancreatitis in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.