SUMMARYAfter fertilization, the expanding carpel of fleshy fruit goes through a phase change to ripening. Although the role of ethylene signalling in mediating climacteric ripening has been established, knowledge regarding the regulation of ethylene biosynthesis and its association with fruit developmental programs is still lacking. A functional screen of tomato transcription factors showed that silencing of the TOMATO AGAMOUS-LIKE 1 (TAGL1) MADS box gene results in altered fruit pigmentation. Over-expressing TAGL1 as a chimeric repressor suggested a role in controlling ripening, as transgenic tomato fruit showed reduced carotenoid and ethylene levels, suppressed chlorophyll breakdown, and down-regulation of ripening-associated genes. Moreover, fruits over-expressing TAGL1 accumulated more lycopene, and their sepals were swollen, accumulated high levels of the yellow flavonoid naringenin chalcone and contained lycopene. Transient promoter-binding assays indicated that part of the TAGL1 activity in ripening is executed through direct activation of ACS2, an ethylene biosynthesis gene that has recently been reported to be a target of the RIN MADS box factor. Examination of the TAGL1 transcript and its over-expression in the rin mutant background suggested that RIN does not regulate TAGL1 or vice versa. The results also indicated RIN-dependent and -independent processes that are regulated by TAGL1. We also noted that fruit of TAGL1 loss-of-function lines had a thin pericarp layer, indicating an additional role for TAGL1 in carpel expansion prior to ripening. The results add a new component to the current model of the regulatory network that controls fleshy fruit ripening and its association with the ethylene biosynthesis pathway.
The amount of cholesterol made by many plants is not negligible. Whereas cholesterogenesis in animals was elucidated decades ago, the plant pathway has remained enigmatic. Among other roles, cholesterol is a key precursor for thousands of bioactive plant metabolites, including the well-known Solanum steroidal glycoalkaloids. Integrating tomato transcript and protein co-expression data revealed candidate genes putatively associated with cholesterol biosynthesis. A combination of functional assays including gene silencing, examination of recombinant enzyme activity and yeast mutant complementation suggests the cholesterol pathway comprises 12 enzymes acting in 10 steps. It appears that half of the cholesterogenesis-specific enzymes evolved through gene duplication and divergence from phytosterol biosynthetic enzymes, whereas others act reciprocally in both cholesterol and phytosterol metabolism. Our findings provide a unique example of nature's capacity to exploit existing protein folds and catalytic machineries from primary metabolism to assemble a new, multi-step metabolic pathway. Finally, the engineering of a 'high-cholesterol' model plant underscores the future value of our gene toolbox to produce high-value steroidal compounds via synthetic biology.
Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules produced by solanaceous species. They contribute to pathogen defence but are toxic to humans and considered as anti-nutritional compounds. Here we show that GLYCOALKALOID METABOLISM 9 (GAME9), an APETALA2/Ethylene Response Factor, related to regulators of alkaloid production in tobacco and Catharanthus roseus, controls SGA biosynthesis. GAME9 knockdown and overexpression in tomato and potato alters expression of SGAs and upstream mevalonate pathway genes including the cholesterol biosynthesis gene STEROL SIDE CHAIN REDUCTASE 2 (SSR2). Levels of SGAs, C24-alkylsterols and the upstream mevalonate and cholesterol pathways intermediates are modified in these plants. Δ(7)-STEROL-C5(6)-DESATURASE (C5-SD) in the hitherto unresolved cholesterol pathway is a direct target of GAME9. Transactivation and promoter-binding assays show that GAME9 exerts its activity either directly or cooperatively with the SlMYC2 transcription factor as in the case of the C5-SD gene promoter. Our findings provide insight into the regulation of SGA biosynthesis and means for manipulating these metabolites in crops.
Microbial communities associated with roots confer specific functions to their hosts, thereby modulating plant growth, health, and productivity. Yet, seminal questions remain largely unaddressed including whether and how the rhizosphere microbiome modulates root metabolism and exudation and, consequently, how plants fine tune this complex belowground web of interactions. Here we show that, through a process termed systemically induced root exudation of metabolites (SIREM), different microbial communities induce specific systemic changes in tomato root exudation. For instance, systemic exudation of acylsugars secondary metabolites is triggered by local colonization of bacteria affiliated with the genus Bacillus. Moreover, both leaf and systemic root metabolomes and transcriptomes change according to the rhizosphere microbial community structure. Analysis of the systemic root metabolome points to glycosylated azelaic acid as a potential microbiome-induced signaling molecule that is subsequently exuded as free azelaic acid. Our results demonstrate that rhizosphere microbiome assembly drives the SIREM process at the molecular and chemical levels. It highlights a thus-far unexplored long-distance signaling phenomenon that may regulate soil conditioning.
Steroidal alkaloids (SAs) are triterpene-derived specialized metabolites found in members of the Solanaceae family that provide plants with a chemical barrier against a broad range of pathogens. Their biosynthesis involves the action of glycosyltransferases to form steroidal glycoalkaloids (SGAs). To elucidate the metabolism of SGAs in the Solanaceae family, we examined the tomato (Solanum lycopersicum) GLYCOALKALOID METABOLISM1 (GAME1) gene. Our findings imply that GAME1 is a galactosyltransferase, largely performing glycosylation of the aglycone tomatidine, resulting in SGA production in green tissues. Downregulation of GAME1 resulted in an almost 50% reduction in a-tomatine levels (the major SGA in tomato) and a large increase in its precursors (i.e., tomatidenol and tomatidine). Surprisingly, GAME1-silenced plants displayed growth retardation and severe morphological phenotypes that we suggest occur as a result of altered membrane sterol levels caused by the accumulation of the aglycone tomatidine. Together, these findings highlight the role of GAME1 in the glycosylation of SAs and in reducing the toxicity of SA metabolites to the plant cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.