Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation and radiative processes, and their interactions. Projects between 2016 and 2018 used in-situ probes, radar, lidar and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN) and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase cloudsnucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF/NCAR G-V aircraft flying north-south gradients south of Tasmania, at Macquarie Island, and on the RV Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons.Results show a largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multi-layered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets.
A 1‐year blended surface precipitation data set using Parsivel disdrometer, surface W‐band radar, and tipping bucket measurements is produced for the Macquarie Island Cloud and Radiation Experiment (MICRE) and compared with retrievals from CloudSat (spaceborne 94 GHz radar). Surface precipitation was observed 44% ± 4% of the time between April 2016 and March 2017. Precipitation composed primarily of small particles (diameter <1 mm) occurred about 36% ± 2% of the time, constituting 10% of total accumulation. Remaining precipitation contained enough large particles such that the disdrometer could be used to identify the precipitation type as rain, ice, snow or wet snow. Seasonal and annual statistics on frequency of occurrence and accumulation for each precipitation type observed during MICRE are presented. Most ice and mixed phase precipitation was shallow, originating at a height of 3 km or lower, and occurred most often when Macquarie Island was to the northwest of the nearest cyclonic low‐pressure center. In contrast, rain was more often deep and occurred most frequently when the island was to the southeast of cyclonic lows. A weak diurnal cycle in frequency and mean rate was present with a minimum between 12:00 and 14:00 local time and maximum between 03:00 and 06:00 local time. The CloudSat 2C‐Precip‐Column product missed the lightest precipitation (because the near‐surface reflectivity is <−15 dBZ) and overestimated total liquid precipitation and occurrence of mixed phase precipitation, but captured reasonably well the distribution of rain rates for rates >0.5 mm/hr.
Phase-change materials (PCMs) are important photonic materials that have the advantages of a rapid and reversible phase change, a great difference in the optical properties between the crystalline and amorphous states, scalability, and nonvolatility. With the constant development in the PCM platform and integration of multiple material platforms, more and more reconfigurable photonic devices and their dynamic regulation have been theoretically proposed and experimentally demonstrated, showing the great potential of PCMs in integrated photonic chips. Here, we review the recent developments in PCMs and discuss their potential for photonic devices. A universal overview of the mechanism of the phase transition and models of PCMs is presented. PCMs have injected new life into on-chip photonic integrated circuits, which generally contain an optical switch, an optical logical gate, and an optical modulator. Photonic neural networks based on PCMs are another interesting application of PCMs. Finally, the future development prospects and problems that need to be solved are discussed. PCMs are likely to have wide applications in future intelligent photonic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.