High mobility group A (HMGA) proteins play an important role in the regulation of transcription, differentiation, and neoplastic transformation. In this work, the expression of HMGA 1 and 2 in 152 lung carcinomas of mainly non-small-cell histological type has been studied by immunohistochemistry in order to evaluate their feasibility as lung cancer markers. In 17 lung cancer cases, the related bronchial epithelial changes were also studied for HMGA1 and 2 expression. RNA expression of HMGA1a and b isoforms and of HMGA2 was determined by real-time semi-quantitative RT-PCR in 23 lung carcinomas. High expression of HMGA1 and HMGA2 at both mRNA and protein levels was detected in lung carcinomas, compared with normal lung tissue. Nuclear immunostaining for HMGA1 and 2 proteins also occurred in hyperplastic, metaplastic, and dysplastic bronchial epithelium. Increased nuclear expression of HMGA1 and 2 correlated with poor survival (for adenocarcinomas, HMGA1, p=0.006; HMGA2, p=0.05). While the expression of HMGA2 was significantly associated with cell proliferation (p=0.008), HMGA1 expression did not show any association with proliferation or apoptotic index. Sequencing of HMGA2 transcripts from tumours with very high expression showed a normal full-length transcript. As HMGA proteins were expressed in about 90% of lung carcinomas and their expression was inversely associated with survival, they may provide useful markers for lung cancer diagnosis and prognosis.
We have identified a gene at 11q23, telomeric to MLL, that encodes a guanine nucleotide exchange factor (GEF). This gene is transcribed into a 9.5-kb mRNA containing a 4.6-kb ORF. By Northern analysis, it was found to be expressed in all human tissues examined including peripheral blood leukocytes, spleen, prostate, testis, ovary, small intestine, colon, and minimally in thymus. Analysis of the predicted protein sequence indicates that it has strong homology to several members of the family of Rho GEFs that includes such oncogenes as Dbl, Vav, Tiam, and Bcr. A patient with primary acute myeloid leukemia (AML) and a karyotype of 51,XY,؉8,؉19,؉3mar was found to have the 5 end of MLL at exon 6 fused in-frame with the 3 end of almost the entire ORF of this gene, which we named LARG for leukemia-associated Rho GEF. Transcriptional orientation of both genes at 11q23 is from centromere to telomere, consistent with other data that suggest the MLL-LARG fusion resulted from an interstitial deletion rather than a balanced translocation. LARG does not appear to have any homology with other MLL partner genes reported thus far. Thus, LARG represents an additional member of the GEF family and a novel MLL fusion partner in acute myeloid leukemia.LARG ͉ Dbl protein ͉ gene rearrangements
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.