Background Coronavirus disease (COVID-19) pandemic has affected health and lifestyle behaviors of people globally. This project aims to identify the impact of COVID-19 on lifestyle behavior of individuals in the Middle East and North Africa (MENA) region during confinement. Methods We conducted an online survey in 17 countries (Egypt, Jordan, United Arab Emirates, Kuwait, Bahrain, Saudi Arabia, Oman, Qatar, Yemen, Syria, Palestine, Algeria, Morocco, Libya, Tunisia, Iraq, and Sudan) from the MENA region on August and September 2020. The questionnaire included self-reported information on lifestyle behaviors, including physical activity, eating habits, smoking, watching television, social media use and sleep before and during the pandemic. Logistic regression was performed to analyze the impact of COVID-19 on lifestyle behaviors. Results A total of 5896 participants were included in the final analysis and 62.8% were females. The BMI of the participants was 25.4 ± 5.8 kg/m2. Around 38.4% of the participants stopped practicing any physical activities during the confinement (P < 0.001), and 57.1% reported spending more than 2 h on social media (P < 0.001). There were no significant changes in smoking habits. Also, 30.9% reported an improvement in their eating habits compared with 24.8% reported worsening of their eating habits. Fast-food consumption decreased significantly in 48.8% of the study population. This direct/indirect exposure to COVID-19 was associated with an increased consumption of carbohydrates (OR = 1.09; 95% CI = 1.02–1.17; P = 0.01), egg (OR = 1.08; 95% CI = 1.02–1.16; P = 0.01), sugar (OR = 1.09; 95% CI = 1.02–1.16; P = 0.02), meat, and poultry (OR = 1.13; 95% CI = 1.06–1.20; P < 0.01). There was also associated increase in hours spent on watching television (OR = 1.07; 95% CI = 1.02–1.12; P < 0.01) and social media (OR = 1.09; 95% CI = 1.01–1.18; P = 0.03). However, our results showed a reduction in sleeping hours among those exposed to COVID-19 infection (OR = 0.85; 95% CI = 0.77–0.94; P < 0.01). Conclusions The COVID-19 pandemic was associated with an increase in food consumption and sedentary life. Being exposed to COVID-19 by direct infection or through an infected household is a significant predictor of amplifying these changes. Public health interventions are needed to address healthy lifestyle behaviors during and after the COVID-19 pandemic.
The development of new approaches for sustaining soil quality, leaf health, and maize productivity are imperative in light of water deficit and soil salinity. Plant growth-promoting rhizobacteria (PGPR) and silica nanoparticles (SiNP) are expected to improve soil chemistry leading to improved plant performance and productivity. In this field experiment, water deficit is imposed by three irrigation intervals—12 (I1), 15 (I2), and 18 (I3) days. Plants are also treated with foliar and soil applications (control, PGPR, SiNP, and PGPR + SiNP) to assess soil enzymatic activity, soil physicochemical properties, plant physiological traits, biochemical analysis, nutrient uptake, and productivity of maize (Zea mays L.) plants grown under salt-affected soil during the 2019 and 2020 seasons. With longer irrigation intervals, soil application of PGPR relieves the deleterious impacts of water shortage and improves yield-related traits and maize productivity. This is attributed to the improvement in soil enzymatic activity (dehydrogenase and alkaline phosphatase) and soil physicochemical characteristics, which enhances the plants’ health and growth under longer irrigation intervals (i.e., I2 and I3). Foliar spraying of SiNP shows an improvement in the physiological traits in maize plants grown under water shortage. This is mainly owing to the decline in oxidative stress by improving the enzymatic activity (CAT, SOD, and POD) and ion balance (K+/Na+), resulting in higher photosynthetic rate, relative water content, photosynthetic pigments, and stomatal conductance, alongside reduced proline content, electrolyte leakage, lipid peroxidase, and sodium content under salt-affected soil. The co-treatment of SiNP with PGPR confirms greater improvement in yield-related traits, maize productivity, as well as nutrient uptake (N, P, and K). Accordingly, their combination is a good strategy for relieving the detrimental impacts of water shortage and soil salinity on maize production.
Weeds are one of the most damaging biotic stresses in crop production, and drought and salinity are considered the most serious abiotic stresses. These factors harmfully affect growth and development in several vegetable and field crops by causing harmful effects on physiological and biochemical characteristics such as water uptake, photosynthesis, relative water content, electrolyte leakage, and antioxidant compounds linked with oxidative stress and the accumulation of reactive oxygen species (ROS). These oxidative stress-related components affect most physiological and biochemical characteristics in plants under natural conditions and environmental stresses, especially weed infestation, salinity, and drought stress. ROS such as superoxide (O2•−), hydrogen peroxide (H2O2), peroxyl radical (ROO•), and singlet oxygen (1O2) are very important molecules produced naturally as by-products of metabolic processes in chloroplasts, mitochondria, peroxisomes, and the apoplast. Under stress conditions such as weed infestation, drought and salinity, the morphological and yield characteristics of stressed plants are negatively affected; however, superoxide (O2•−) and hydrogen peroxide (H2O2) are significantly increased. The negative impact of weeds can be mitigated with integrated controls which include herbicides, allelopathy, and crop rotation as well as the different methods for weed control. The defense system in various crops mainly depends on both enzymatic and nonenzymatic antioxidants. The enzymatic antioxidants include superoxide dismutase, glutathione reductase, and catalase; nonenzymatic antioxidants include ascorbic acid, carotenoids, α-Tocopherols, proline, glutathione, phenolics, and flavonoids. These antioxidant components can scavenge various ROS under several stresses, particularly weeds, drought and salinity. In this review, our objective is to shed light on integrated weeds management and plant tolerance to salinity and drought stresses associated with the ROS and the induction of antioxidant components to increase plant growth and yield in the vegetable and field crops.
Cytoplasmic male sterility (CMS) provides an irreplaceable strategy for commercial exploitation of heterosis and producing high-yielding hybrid rice. The exogenous application of plant growth regulators could improve outcrossing rates of the CMS lines by affecting floral traits and accordingly increase hybrid rice seed production. The present study aimed at exploring the impact of growth regulators such as gibberellic acid (GA3), indole-3-acetic acid (IAA), and naphthalene acetic acid (NAA) on promoting floral traits and outcrossing rates in diverse rice CMS lines and improving hybrid rice seed production. The impact of foliar applications of growth regulators comprising GA3 at 300 g/ha or GA3 at 150 g/ha + IAA at 50 g/ha + NAA at 200 g/ha versus untreated control was investigated on floral, growth, and yield traits of five diverse CMS lines. The exogenously sprayed growth regulators, in particular, the combination of GA3, IAA, and NAA (T3) boosted all studied floral, growth, and yield traits in all tested CMS lines. Moreover, the evaluated CMS lines exhibited significant differences in all measured floral traits. L2, L3, and L1 displayed the uppermost spikelet opening angle, duration of spikelet opening, total stigma length, style length, stigma brush, and stigma width. In addition, these CMS lines exhibited the highest plant growth and yield traits, particularly under T3. Consequently, exogenous application of GA3, IAA, and NAA could be exploited to improve the floral, growth, and yield traits of promising CMS lines such as L2, L3, and L1, hence increasing outcrossing rates and hybrid rice seed production.
Conservation agriculture helps to mitigate the adverse impacts of conventional practices and intensive cultivation, accordingly enhancing agricultural sustainability. Tillage management and the preceding crop impact the sustainable use of soil resources and ultimately crop growth and productivity. The present study aimed to assess the impacts of the tillage system, cropping system, and their different interactions on soil properties and agronomic performance. No-tillage (NT), reduced tillage (RT), and conventional tillage (CT) were combined with three cropping systems; continuous wheat (wheat/wheat/wheat, W/W/W), lentil/wheat/lentil (L/W/L), and oat/wheat/barley-pea (O/W/BP) during three years crop rotation. The results displayed that the conservative practices (NT and RT) recorded higher soil nutrient content (N, P, K, Ca, and Mg) than conventional tillage (CT). Moreover, NT and RT exhibited higher bulk density (BD) and lower water infiltration rates compared to CT. Besides, NT and RT tended to have higher soil moisture than CT. The cropping system W/W/W displayed higher magnesium content, while W/L/W had higher phosphorous and O/W/BP showed higher sodium values. The mono-cropping system under conventional tillage tended to have lower soil nutrient content compared to the other combinations. The highest wheat aboveground biomass, wheat grain yield, and lentil seed yield were produced by RT and CT compared to NT. Otherwise, the higher emergence of barley-pea was assigned for NT followed by CT and RT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.