Meier-Gorlin syndrome (ear, patella, short stature syndrome) is an autosomal recessive primordial dwarfism syndrome characterised by absent/hypoplastic patellae and markedly small ears1-3. Both pre and post-natal growth are impaired in this disorder and although microcephaly is often evident, intellect is usually normal. We report here that this disorder shows marked locus heterogeneity and we identify mutations in five separate genes: ORC1, ORC4, ORC6, CDT1 and CDC6. All encode components of the pre-replication complex, implicating defects in replication licensing as the cause of a genetic syndrome with distinct developmental abnormalities.
The filamins are cytoplasmic proteins that regulate the structure and activity of the cytoskeleton by cross-linking actin into three-dimensional networks, linking the cell membrane to the cytoskeleton and serving as scaffolds on which intracellular signaling and protein trafficking pathways are organized (reviewed in refs. 1,2). We identified mutations in the gene encoding filamin B in four human skeletal disorders. We found homozygosity or compound heterozygosity with respect to stop-codon mutations in autosomal recessive spondylocarpotarsal syndrome (SCT, OMIM 272460) and missense mutations in individuals with autosomal dominant Larsen syndrome (OMIM 150250) and the perinatal lethal atelosteogenesis I and III phenotypes (AOI, OMIM 108720; AOIII, OMIM 108721). We found that filamin B is expressed in human growth plate chondrocytes and in the developing vertebral bodies in the mouse. These data indicate an unexpected role in vertebral segmentation, joint formation and endochondral ossification for this ubiquitously expressed cytoskeletal protein.Morphogenesis in vertebrate organisms requires the integration of extracellular signals with alterations in the cellular cytoskeleton. Filamins regulate the organization of cytoskeletal F-actin into either parallel bundles or orthogonal gel networks 3 and also mediate interactions between subcortical actin networks and transmembrane receptors to modulate cell-cell, cell-matrix and intracytoplasmic signal transduction 1,2,4 . Mammals have three filamin genes, FLNA, FLNB and FLNC. FLNA and FLNB seem to be ubiquitously expressed 5,6 ; FLNC is predominantly expressed in muscle. Human filamin genes are highly similar with conserved exon-intron structure, and there is ∼70% homology at the protein level 2,7 . The filamin monomer comprises an N-terminal actin binding domain (ABD) followed by a series of 24 β-sheet repeats that collectively bind many cytoplasmic and transmembrane proteins 1,2 . Filamins exist in vivo as dimers. Dimerization, leading to homo-and possibly heterodimer formation, is mediated by interactions between C-terminal sequences 5,8,9 . Mutations in FLNA produce a spectrum of X-linked malformation and osteochondrodysplasia syndromes. FLNA loss-of-function mutations are usually embryonically lethal in males and underlie a neuronal migration disorder in females 10 . Mutations producing structural changes in the protein lead to numerous developmental anomalies in the brain, skeleton and viscera 11 .Recently the gene associated with SCT, an autosomal recessive disorder characterized by short stature and vertebral, carpal and tarsal fusions 12,13 , was localized on chromosome 3p14 (ref. 14). These studies and further recombination mapping (data not shown) identified a 4.7-cM candidate region, which included a 1.4-Mb region of homozygosity containing 14 genes. Mutations were not found in the candidate genes WNT5A 14 , ASB14 and IL17RD (also known as SEF) in affected individuals from the linked families. The gene FLNB localizes to this interval and, considering the r...
We used an exome-sequencing strategy and identified an allelic series of NOTCH2 mutations in Hajdu-Cheney syndrome, an autosomal dominant multisystem disorder characterized by severe and progressive bone loss. The Hajdu-Cheney syndrome mutations are predicted to lead to the premature truncation of NOTCH2 with either disruption or loss of the C-terminal proline-glutamate-serine-threonine-rich proteolytic recognition sequence, the absence of which has previously been shown to increase Notch signaling.
Pitt-Hopkins syndrome (PTHS), characterized by severe intellectual disability and typical facial gestalt, is part of the clinical spectrum of Rett-like syndromes. TCF4, encoding a basic helix-loop-helix (bHLH) transcription factor, was identified as the disease-causing gene with de novo molecular defects. While PTHS appears to be a recognizable clinical entity, it seems to remain underdiagnosed, especially when facial gestalt is less typical. With the aim to facilitate the diagnosis of PTHS and to increase its rate and specificity, we have investigated 33 novel patients and defined a Clinical Diagnosis Score. Analysis of 112 individuals (79 previously reported and 33 novel patients) allowed us to delineate the TCF4 mutational spectrum, with 40% point mutations, 30% small deletions/insertions, and 30% deletions. Most of these were private mutations and generated premature stop codons. Missense mutations were localized in the bHLH domain, which is a mutational hotspot. No obvious difference was observed between patients harboring truncating, missense mutations, or deletions, further supporting TCF4 haploinsufficiency as the molecular mechanism underlying PTHS. In this study, we have summarized the current knowledge of TCF4 molecular pathology, reported all the mutations in the TCF4 database (http://www.LOVD.nl/TCF4), and present a novel and comprehensive diagnostic strategy for PTHS.
Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis-trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10, PLOD2 and SERPINH1, that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.