Ultra-high throughput in silico screening identified molecules that bind to α-synuclein fibrils, which were analyzed by photo-crosslinking, structure-activity studies, and radioligand binding to validate this approach for finding imaging probes.
Thioamide substitutions in peptides can be used as fluorescence quenchers in protease sensors and as stabilizing modifications of hormone analogs. To guide these applications in the context of serine proteases, we here examine the cleavage of several model substrates, scanning a thioamide between the P3 and P3′ positions, and identify perturbing positions for thioamide substitution. While all serine proteases tested were affected by P1 thioamidation, certain proteases were also significantly affected by other thioamide positions. We demonstrate how these findings can be applied by harnessing the combined P3/P1 effect of a single thioamide on kallikrein proteolysis to protect two key positions in a neuropeptide Y-based imaging probe, increasing its serum half-life to >24 h while maintaining potency for binding to Y1 receptor expressing cells. Such stabilized peptide probes could find application in imaging cell populations in animal models or even in clinical applications such as fluorescence-guided surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.