Background The aim of this study was to identify sources of variability including patient gender and body surface area (BSA) in pharmacokinetic (PK) exposure for high-dose methotrexate (MTX) continuous infusion in a large cohort of patients with hematological and solid malignancies. Methods We conducted a retrospective PK analysis of MTX plasma concentration data from hematological/oncological patients treated at the University Hospital of Cologne between 2005 and 2018. Nonlinear mixed effects modeling was performed. Covariate data on patient demographics and clinical chemistry parameters was incorporated to assess relationships with PK parameters. Simulations were conducted to compare exposure and probability of target attainment (PTA) under BSA adjusted, flat and stratified dosing regimens. Results Plasma concentration over time data (2182 measurements) from therapeutic drug monitoring from 229 patients was available. PK of MTX were best described by a three-compartment model. Values for clearance (CL) of 4.33 [2.95–5.92] L h− 1 and central volume of distribution of 4.29 [1.81–7.33] L were estimated. An inter-occasion variability of 23.1% (coefficient of variation) and an inter-individual variability of 29.7% were associated to CL, which was 16 [7–25] % lower in women. Serum creatinine, patient age, sex and BSA were significantly related to CL of MTX. Simulations suggested that differences in PTA between flat and BSA-based dosing were marginal, with stratified dosing performing best overall. Conclusion A dosing scheme with doses stratified across BSA quartiles is suggested to optimize target exposure attainment. Influence of patient sex on CL of MTX is present but small in magnitude.
Purpose To describe 5-fluorouracil (5FU) pharmacokinetics, myelotoxicity and respective covariates using a simultaneous nonlinear mixed effect modelling approach. Methods Thirty patients with gastrointestinal cancer received 5FU 650 or 1000 mg/m 2 /day as 5-day continuous venous infusion (14 of whom also received cisplatin 20 mg/m 2 /day). 5FU and 5-fluoro-5,6-dihydrouracil (5FUH2) plasma concentrations were described by a pharmacokinetic model using NONMEM. Absolute leukocyte counts were described by a semimechanistic myelosuppression model. Covariate relationships were evaluated to explain the possible sources of variability in 5FU pharmacokinetics and pharmacodynamics. Results Total clearance of 5FU correlated with body surface area (BSA). Population estimate for total clearance was 249 L/h. Clearances of 5FU and 5FUH2 fractionally changed by 77%/m 2 difference from the median BSA. 5FU central and peripheral volumes of distribution were 5.56 L and 28.5 L, respectively. Estimated 5FUH2 clearance and volume of distribution were 121 L/h and 96.7 L, respectively. Baseline leukocyte count of 6.86 × 10 9 /L, as well as mean leukocyte transit time of 281 h accounting for time delay between proliferating and circulating cells, was estimated. The relationship between 5FU plasma concentrations and absolute leukocyte count was found to be linear. A higher degree of myelosuppression was attributed to combination therapy (slope = 2.82 L/mg) with cisplatin as compared to 5FU monotherapy (slope = 1.17 L/mg). Conclusions BSA should be taken into account for predicting 5FU exposure. Myelosuppression was influenced by 5FU exposure and concomitant administration of cisplatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.