Low birth weight resulting from intrauterine growth retardation (IUGR) is a risk factor for further development of metabolic diseases. The pig appears to reproduce nearly all of the phenotypic pathological consequences of human IUGR and is likely to be more relevant than rodents in studies of neonatal development. In the present work, we characterized the model of low-birth-weight piglets with particular attention to the hypothalamic leptin-sensitive system, and we tested whether postnatal leptin supplementation can reverse the precocious signs of adverse metabolic programming. Our results demonstrated that 1) IUGR piglets present altered postnatal growth and increased adiposity; 2) IUGR piglets exhibit abnormal hypothalamic distribution of leptin receptors that may be linked to further disturbance in food-intake behavior; and 3) postnatal leptin administration can partially reverse the IUGR phenotype by correcting growth rate, body composition, and development of several organs involved in metabolic regulation. We conclude that IUGR may be characterized by altered leptin receptor distribution within the hypothalamic structures involved in metabolic regulation and that leptin supplementation can partially reverse the IUGR phenotype. These results open interesting therapeutic perspectives in physiopathology for the correction of defects observed in IUGR.
BackgroundThe World Gastroenterology Organization recommends developing national guidelines for the diagnosis of Celiac Disease (CD): hence a profile of the diagnosis of CD in each country is required. We aim to describe a cross-sectional picture of the clinical features and diagnostic facilities in 16 countries of the Mediterranean basin. Since a new ESPGHAN diagnostic protocol was recently published, our secondary aim is to estimate how many cases in the same area could be identified without a small intestinal biopsy.MethodsBy a stratified cross-sectional retrospective study design, we examined clinical, histological and laboratory data from 749 consecutive unselected CD children diagnosed by national referral centers.ResultsThe vast majority of cases were diagnosed before the age of 10 (median: 5 years), affected by diarrhea, weight loss and food refusal, as expected. Only 59 cases (7.8%) did not suffer of major complaints. Tissue transglutaminase (tTG) assay was available, but one-third of centers reported financial constraints in the regular purchase of the assay kits. 252 cases (33.6%) showed tTG values over 10 times the local normal limit. Endomysial antibodies and HLA typing were routinely available in only half of the centers. CD was mainly diagnosed from small intestinal biopsy, available in all centers. Based on these data, only 154/749 cases (20.5%) would have qualified for a diagnosis of CD without a small intestinal biopsy, according to the new ESPGHAN protocol.ConclusionsThis cross-sectional study of CD in the Mediterranean referral centers offers a puzzling picture of the capacities to deal with the emerging epidemic of CD in the area, giving a substantive support to the World Gastroenterology Organization guidelines.
Babies with intra-uterine growth restriction (IUGR) are at increased risk for experiencing negative neonatal outcomes due to their general developmental delay. The present study aimed to investigate the effects of a short postnatal leptin supply on the growth, structure, and functionality of several organs at weaning. IUGR piglets were injected from day 0 to day 5 with either 0.5 mg/kg/d leptin (IUGRLep) or saline (IUGRSal) and euthanized at day 21. Their organs were collected, weighed, and sampled for histological, biochemical, and immunohistochemical analyses. Leptin induced an increase in body weight and the relative weights of the liver, spleen, pancreas, kidneys, and small intestine without any changes in triglycerides, glucose and cholesterol levels. Notable structural and functional changes occurred in the ovaries, pancreas, and secondary lymphoid organs. The ovaries of IUGRLep piglets contained less oogonia but more oocytes enclosed in primordial and growing follicles than the ovaries of IUGRSal piglets, and FOXO3A staining grade was higher in the germ cells of IUGRLep piglets. Within the exocrine parenchyma of the pancreas, IUGRLep piglets presented a high rate of apoptotic cells associated with a higher trypsin activity. In the spleen and the Peyer’s patches, B lymphocyte follicles were much larger in IUGRLep piglets than in IUGRSal piglets. Moreover, IUGRLep piglets showed numerous CD79+cells in well-differentiated follicle structures, suggesting a more mature immune system. This study highlights a new role for leptin in general developmental processes and may provide new insight into IUGR pathology.
NADPH oxidase, a multi-subunit protein consisting of cytosolic components and the membranebound heterodimer,plays an instrumental role in host defence mechanisms of phagocytes. Genetic deficiency of the enzymatic complex results in an inherited disorder, chronic granulomatous disease (CGD), which is characterized by an impaired phagocyte microbicidal activity. X-Linked (XL) CGD results from a mutation in the CYBB gene encoding the gp91phox subunit, while autosomal recessive (AR) CGD is associated with mutations in one of the NCF1, NCF2 and CYBA genes that encode the p47phox, p67phox and p22phox subunits, respectively. In the study reported here, we investigated genetic defects underlying CGD in 15 Tunisian patients from 14 unrelated families. Haplotype analyses and homozygosity mapping with microsatellite markers around known CGD genes assigned the genetic defect to NCF1 in four patients, to NCF2 in four patients and to CYBA in two patients. However, one family with two CGD patients seemed not to link the genetic defect to any known AR-CGD genes. Mutation screening identified two novel mutations in NCF2 and CYBA in addition to the recurrent mutation, DGT, in NCF1 and a splice site mutation previously reported in a North African patient. Our results revealed the genetic and mutational heterogeneity of the AR recessive form of CGD in Tunisia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.