Purpose Diabetes mellitus (DM) is a metabolic disorder caused by an absolute or relative deficiency of insulin, a debilitating and costly disease with multiple serious complications. Lower urinary tract (LUT) complications are among the most common complications of DM. The most common and bothersome LUT complication of DM is diabetic cystopathy, or diabetic bladder dysfunction (DBD). We reviewed the current translational knowledge of DBD. Materials and Methods We performed a search of the English literature through PUBMED. The key words used were “diabetes” and “bladder dysfunction” or “cystopathy”. Our data and perspective are provided for consideration of future direction of research. Results Despite traditional recognition of DBD, as a voiding problem, characterized by poor emptying and overflow incontinence, recent clinical and experimental evidence indicate a presence of storage problems such as urgency, and urge incontinence in DM. Recent experimental evidence from studies of DBD on small animal models of DM, indicate the presence of a temporal effect on DBD: Early phase of DM causes compensated bladder function; and late phase of DM causes decompensated bladder function. The ‘temporal theory’ could plausibly provide the scientific road map for correlation between clinical and experimental findings as well as identification of role of mechanisms such as polyuria, hyperglycemia, oxidative stress, autonomic neuropathy and decompensation of contractile apparatus of the bladder in creation of clinical and experimental manifestations of the DBD. Conclusions DBD includes time-dependent manifestations of storage and emptying problems. Identification of mechanistic pathways would lead us to identification of therapeutic intervention.
Corpus cavernosum smooth muscle (CCSM) from rabbits made diabetic for 6 months as a result of alloxan injection exhibited increased sensitivity (3vs 9 nM EC 50 ) and generated 20-50% greater force to endothelin-1 (ET-1) compared to CCSM from normal rabbits. In contrast, the force produced by the CCSM in response to KCl and phenylephrine was not significantly altered in diabetic CCSM. The increased ET-1 sensitivity is associated with a two to three-fold upregulation of ET receptor A at both mRNA and protein levels in diabetic CCSM. ET-1-induced CCSM contraction is largely dependent upon Rho-kinase (ROK), since it is almost completely blocked by Y-27632 (a highly selective ROK inhibitor). Furthermore, expression of ROKb isoform is selectively upregulated in CCSM from diabetic rabbits. Thus, an increased CCSM tone, modulated by sensitization of the endothelin-mediated contractile pathway via ROK, may be a key component of the molecular mechanism of diabetes-induced erectile dysfunction.
Detrusor smooth muscle (DSM) undergoes hypertrophy after partial bladder outlet obstruction (PBOO) in male rabbits, as it does in men with PBOO induced by benign prostatic hyperplasia. Despite detrusor hypertrophy, some bladders are severely dysfunctional (decompensated). In this study, the rabbit model for PBOO was used to determine the biochemical regulation of the contractile apparatus and force maintenance by the detrusor from decompensated bladders (DB). Bladders from sham-operated rabbits served as a control. On stimulation with 125 mM KCl, the DSM from sham-operated (SB) rabbits showed phasic contractions, whereas the detrusor from DB was tonic, exhibiting slow development of force, a longer duration of force maintenance, and slow relaxation. The Rho kinase (ROK) inhibitor Y-27632 enhanced the relaxation of precontracted DSM strips from DB. The enhancement of relaxation of the KCl-induced contraction of DB by Y-27632 was associated with dephosphorylation of myosin light chain (MLC20). The DSM extract from DB showed low phosphatase activity compared with that from SB. The DB also showed more Ca2+-independent MLC20 phosphorylation, which was partially inhibited by Y-27632. RT-PCR and Western blotting revealed similar expression levels of MLC kinase and ROK-alpha in SB and DB, but ROK-beta was overexpressed in DB. These results suggest that the ROK-mediated pathway is partly responsible for the high degree of force maintenance and slow relaxation in the detrusor from DB.
Partial urinary bladder outlet obstruction (PBOO) in men, secondary to benign prostatic hyperplasia, induces detrusor smooth muscle (DSM) hypertrophy. However, despite DSM hypertrophy, some bladders become severely dysfunctional (decompensated). Using a rabbit model of PBOO, we found that although DSM from sham-operated bladders expressed nearly 100% of both the smooth muscle myosin heavy chain isoform SM-B and essential light chain isoform LC17a, DSM from severely dysfunctional bladders expressed as much as 75% SM-A and 40% LC17b (both associated with decreased maximum velocity of shortening). DSM from dysfunctional bladder also exhibited tonic-type contractions, characterized by slow force generation and high force maintenance. Immunofluorescence microscopy showed that decreased SM-B expression in dysfunctional bladders was not due to generation of a new cell population lacking SM-B. Metabolic cage monitoring revealed decreased void volume and increased voiding frequency correlated with overexpression of SM-A and LC17b. Myosin isoform expression and bladder function returned toward normal upon removal of the obstruction, indicating that the levels of expression of these isoforms are markers of the PBOO-induced dysfunctional bladders.
Large-conductance voltage- and calcium-activated potassium (BK) channels have been shown to play a role in detrusor overactivity (DO). The goal of this study was to determine whether bladder outlet obstruction-induced DO is associated with downregulation of BK channels and whether BK channels affect myosin light chain 20 (MLC(20)) phosphorylation in detrusor smooth muscle (DSM). Partial bladder outlet obstruction (PBOO) was surgically induced in male New Zealand White rabbits. The rabbit PBOO model shows decreased voided volumes and increased voiding frequency. DSM from PBOO rabbits also show enhanced spontaneous contractions compared with control. Both BK channel alpha- and beta-subunits were significantly decreased in DSM from PBOO rabbits. Immunostaining shows BKbeta mainly expressed in DSM, and its expression is much less in PBOO DSM compared with control DSM. Furthermore, a translational study was performed to see whether the finding discovered in the animal model can be translated to human patients. The urodynamic study demonstrates several overactive DSM contractions during the urine-filling stage in benign prostatic hyperplasia (BPH) patients with DO, while DSM is very quiet in BPH patients without DO. DSM biopsies revealed significantly less BK channel expression at both mRNA and protein levels. The degree of downregulation of the BK beta-subunit was greater than that of the BK alpha-subunit, and the downregulation of BK was only associated with DO, not BPH. Finally, the small interference (si) RNA-mediated downregulation of the BK beta-subunit was employed to study the effect of BK depletion on MLC(20) phosphorylation. siRNA-mediated BK channel reduction was associated with an increased MLC(20) phosphorylation level in cultured DSM cells. In summary, PBOO-induced DO is associated with downregulation of BK channel expression in the rabbit model, and this finding can be translated to human BPH patients with DO. Furthermore, downregulation of the BK channel may contribute to DO by increasing the basal level of MLC(20) phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.