Chromosomal architecture is known to influence gene expression, yet its role in controlling cell fate remains poorly understood. Reprogramming of somatic cells into pluripotent stem cells by the transcription factors (TFs) Oct4, Sox2, Klf4 and Myc offers an opportunity to address this question but is severely limited by the low proportion of responding cells. We recently developed a highly efficient reprogramming protocol that synchronously converts somatic into pluripotent stem cells. Here, we employ this system to integrate time-resolved changes in genome topology with gene expression, TF binding and chromatin state dynamics. This revealed that TFs drive topological genome reorganization at multiple architectural levels, which often precedes changes in gene expression. Removal of locus-specific topological barriers can explain why pluripotency genes are activated sequentially, instead of simultaneously, during reprogramming. Taken together, our study implicates genome topology as an instructive force for implementing transcriptional programs and cell fate in mammals.
Summary
Xist
represents a paradigm for long non-coding RNA function in epigenetic regulation, although how it mediates X-chromosome inactivation (XCI) remains largely unexplained. Multiple
Xist
-RNA binding proteins have recently been identified, including SPEN
1
–
3
, the loss of which has been associated with deficient XCI at multiple loci
2
–
6
. Here we demonstrate that SPEN is a key orchestrator of XCI
in vivo
and unravel its mechanism of action. We show that SPEN is essential for initiating gene silencing on the X chromosome in preimplantation mouse embryos and embryonic stem cells. SPEN is dispensable for maintenance of XCI in neural progenitors, although it significantly dampens expression of genes that escape XCI. We show that SPEN is immediately recruited to the X-chromosome upon
Xist
up-regulation, and is targeted to enhancers and promoters of active genes. SPEN rapidly disengages from chromatin upon gene silencing, implying a need for active transcription to tether it to chromatin. We define SPEN’s SPOC domain as a major effector of SPEN’s gene silencing function, and show that tethering SPOC to
Xist
RNA is sufficient to mediate gene silencing. We identify SPOC’s protein partners which include NCOR/SMRT, the m6A RNA methylation machinery, the NuRD complex, RNA polymerase II and factors involved in regulation of transcription initiation and elongation. We propose that SPEN acts as a molecular integrator for initiation of XCI, bridging
Xist
RNA with the transcription machinery as well as nucleosome remodelers and histone deacetylases, at active enhancers and promoters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.