We report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on (57)Fe Mössbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe-NCN into Li/Na-NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well-established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not require heavy treatments (such as nanoscale tailoring, sophisticated textures, or coating) to obtain long cycle life with current density as high as 9 A g(-1) for hundreds of charge-discharge cycles. Similar to the iron compound, several other transition-metal carbodiimides M(x)(NCN)y with M=Mn, Cr, Zn can cycle successfully versus lithium and sodium. Their electrochemical activity and performance open the way to the design of a novel family of anode materials.
In multiferroic BiFeO(3) thin films grown on highly mismatched LaAlO(3) substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic properties. Notably, the highly distorted phase quasiconcomitantly presents an abrupt structural change, transforms from a standard to a nonconventional ferroelectric, and transitions from antiferromagnetic to paramagnetic at 360±20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric, and piezomagnetic responses, with potential in many applications fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.