In many human infections, hosts and pathogens coexist for years or decades. Important examples include HIV, herpes viruses, tuberculosis, leprosy, and malaria. With the exception of intensively studied viral infections such as HIV͞AIDs, little is known about the extent to which the clonal expansion that occurs during long-term infection by pathogens involves important genetic adaptations. We report here a detailed, whole-genome analysis of one such infection, that of a cystic fibrosis (CF) patient by the opportunistic bacterial pathogen Pseudomonas aeruginosa. The bacteria underwent numerous genetic adaptations during 8 years of infection, as evidenced by a positive-selection signal across the genome and an overwhelming signal in specific genes, several of which are mutated during the course of most CF infections. Of particular interest is our finding that virulence factors that are required for the initiation of acute infections are often selected against during chronic infections. It is apparent that the genotypes of the P. aeruginosa strains present in advanced CF infections differ systematically from those of ''wild-type'' P. aeruginosa and that these differences may offer new opportunities for treatment of this chronic disease.chronic infection ͉ positive selection ͉ virulence ͉ antibiotic resistance M ost cystic fibrosis (CF) patients acquire chronic Pseudomonas aeruginosa infections by their teenage years, if not earlier, and these respiratory infections are responsible for much of the morbidity and mortality caused by CF (1, 2). It has been established that most of these infections are clonal (3), and even among groups of CF patients treated in specific clinics the infections are acquired independently, presumably from diverse environmental reservoirs (4). Previous studies, particularly of the O-antigen biosynthetic locus and the transcriptional regulator mucA, indicate that some P. aeruginosa genes commonly incur loss-of-function mutations as the infections progress (5-7). Mutator phenotypes also arise frequently (8).The overall picture is reminiscent of typical cancers: a clone of cells, albeit in this instance one of exogenous origin, experiences selection for an accumulation of genetic variants that promote long-term survival and clonal expansion. Our data validate this model for P. aeruginosa infections in CF and provide strong evidence for the role of selection in shaping the genotypes of the bacteria that are present during the late, life-threatening phase of the infections. Our data also focus attention on particular aspects of P. aeruginosa metabolism that are premier targets of selection, both in the patient we studied in most detail and in other, independently evolving, P. aeruginosa infections in additional CF patients.
BACKGROUND-Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, and nearly 90% of patients have at least one copy of the Phe508del CFTR mutation. In a phase 2 trial involving patients who were heterozygous for the Phe508del CFTR mutation and a minimal-function mutation (Phe508delminimal function genotype), the next-generation CFTR corrector elexacaftor, in combination with tezacaftor and ivacaftor, improved Phe508del CFTR function and clinical outcomes.METHODS-We conducted a phase 3, randomized, double-blind, placebo-controlled trial to confirm the efficacy and safety of elexacaftor-tezacaftor-ivacaftor in patients 12 years of age or older with cystic fibrosis with Phe508del-minimal function genotypes. Patients were randomly assigned to receive elexacaftor-tezacaftor-ivacaftor or placebo for 24 weeks. The primary end point was absolute change from baseline in percentage of predicted forced expiratory volume in 1 second (FEV 1 ) at week 4.
VX17-445-103 Trial Group (2019). Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet.
BACKGROUND VX-445 is a next-generation cystic fibrosis transmembrane conductance regulator (CFTR) corrector designed to restore Phe508del CFTR protein function in patients with cystic fibrosis when administered with tezacaftor and ivacaftor (VX-445–tezacaftor–ivacaftor). METHODS We evaluated the effects of VX-445–tezacaftor–ivacaftor on Phe508del CFTR protein processing, trafficking, and chloride transport in human bronchial epithelial cells. On the basis of in vitro activity, a randomized, placebo-controlled, double-blind, dose-ranging, phase 2 trial was conducted to evaluate oral VX-445–tezacaftor–ivacaftor in patients heterozygous for the Phe508del CFTR mutation and a minimal-function mutation (Phe508del– MF) and in patients homozygous for the Phe508del CFTR mutation (Phe508del–Phe508del) after tezacaftor–ivacaftor run-in. Primary end points were safety and absolute change in percentage of predicted forced expiratory volume in 1 second (FEV1) from baseline. RESULTS In vitro, VX-445–tezacaftor–ivacaftor significantly improved Phe508del CFTR protein processing, trafficking, and chloride transport to a greater extent than any two of these agents in dual combination. In patients with cystic fibrosis, VX-445–tezacaftor–ivacaftor had an acceptable safety and side-effect profile. Most adverse events were mild or moderate. The treatment also resulted in an increased percentage of predicted FEV1 of up to 13.8 points in the Phe508del–MF group (P<0.001). In patients in the Phe508del–Phe508del group, who were already receiving tezacaftor–ivacaftor, the addition of VX-445 resulted in an 11.0-point increase in the percentage of predicted FEV1 (P<0.001). In both groups, there was a decrease in sweat chloride concentrations and improvement in the respiratory domain score on the Cystic Fibrosis Questionnaire–Revised. CONCLUSIONS The use of VX-445–tezacaftor–ivacaftor to target Phe508del CFTR protein resulted in increased CFTR function in vitro and translated to improvements in patients with cystic fibrosis with one or two Phe508del alleles. This approach has the potential to treat the underlying cause of cystic fibrosis in approximately 90% of patients. (Funded by Vertex Pharmaceuticals; VX16–445-001 ClinicalTrials.gov number, NCT03227471; and EudraCT number, 2017 −0 00797 −1 1.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.